豹朊

Programmable HMI Indicator／Controller
 Version 4.01

Installation Manual

Contents

About This Manual 1
1.0 Introduction 1
1.1 Operating Modes. 2
1.2 Indicator Operations 3
1.3 Softkey Operations 3
1.4 Contrast Adjustment 4
1.5 System Configurations and Options 4
1.6 Summary of Changes 5
1.7 Hardware and Software Compatibility 7
2.0 Installation 8
2.1 Unpacking and Assembly 8
2.2 Enclosure Disassembly 8
2.3 Cable Connections 8
2.3.1 Cable Grounding 8
2.3.2 Load Cells. 9
2.3.3 Serial Communications 10
2.3.4 Digital I/O 12
2.4 Installing Option Cards. 13
2.5 Expansion Board Configurations 14
2.6 Enclosure Reassembly. 15
2.7 CPU Board Removal 15
2.8 Fuse Replacement 16
2.9 Battery Replacement 16
2.10 Parts Kit Contents 17
2.11 Replacement Parts and Assembly Drawings 18
3.0 Configuration 22
3.1 Configuration Methods 22
3.1.1 iRev Configuration. 22
3.1.2 Serial Command Configuration 23
3.1.3 Front Panel Configuration 23
3.1.4 Multi-Range and Multi-Interval Scales 23
3.1.5 Total Scale Configuration 24
3.2 Menu Structures and Parameter Descriptions 25
3.2.1 SCALES Menu 26
3.2.2 SERIAL Menu 37
3.2.3 FEATURE Menu 42
3.2.4 PFORMT Menu 48
3.2.5 SETPTS Menu 49
3.2.6 DIG I/O Menu 50
3.2.7 ALGOUT Menu 52
3.2.8 FLDBUS Menu 53
3.2.9 VERS Menu 54
4.0 Calibration 55
4.1 Gravity Compensation 55
4.2 Front Panel Calibration 55
4.3 Serial Command Calibration 57
4.4 iRev Calibration 57
5.0 Using iRev 59
5.1 Installing and Starting the Program 59
5.2 Saving and Opening Files 59
5.3 Hardware Configuration 59
5.4 Configuring Scales 60
5.4.1 Configuring Other Parameters 60
5.4.2 Setpoints 60
5.5 Configuring the Display 60
5.6 Connecting to the Indicator 61
5.6.1 Downloading to the Indicator 61
5.6.2 Uploading Configuration to iRev 61
5.7 Installing Software Upgrades 61
6.0 Print Formatting 62
6.1 Print Formatting Commands 62
6.2 LaserLight Commands 64
6.3 Default Print Formats 64
6.4 Customizing Print Formats. 65
6.4.1 Using iRev 65
6.4.2 Using the Front Panel 66
6.4.3 Using Serial Commands 67
7.0 Truck Modes 68
7.1 Using the Truck Modes 68
7.2 Using the Truck Regs Display 68
7.3 Weigh-In Procedure. 69
7.4 Weigh-Out Procedure 69
7.5 Single-Transaction Tare Weights and IDs. 69
8.0 Setpoints 70
8.1 Batch and Continuous Setpoints 70
8.2 Setpoint Menu Parameters 73
8.3 Batch Operations. 86
8.4 Batching Examples 87
9.0 Serial Commands 89
9.1 The Serial Command Set. 89
9.1.1 Key Press Commands 89
9.1.2 Reporting Commands. 90
9.1.3 Clear and Reset Commands 90
9.1.4 Parameter Setting Commands 90
9.1.5 Normal Mode Commands. 98
9.1.6 Batching Control Commands 99
9.1.7 Database Commands 99
9.2 Widget Programming 101
9.2.1 Scale Widgets. 101
9.2.2 Bitmap Widgets 101
9.2.3 Bargraph Widgets. 102
9.2.4 Label Widgets. 102
9.2.5 Numeric Widgets 102
9.2.6 Symbol Widgets 103
10.0 Appendix 106
10.1 Troubleshooting 106
10.1.1 Option Card Diagnostic Errors 107
10.1.2 Using the HARDWARE Command 107
10.1.3 User Program Diagnostic Errors 107
10.1.4 Using the XE Serial Command. 108
10.2 Regulatory Mode Functions 109
10.3 PS/2 Keyboard Interface 110
10.4 Serial Scale Interface. 111
10.5 Local/Remote Operation 111
10.6 Custom Stream Formatting. 112
10.7 Stream Formatting Examples 115
10.7.1 Toledo 8142 Indicator 115
10.7.2 Cardinal 738 Indicator 116
10.7.3 Weightronix WI -120 Indicator 117
10.8 Data Formats 118
10.9 Digital Filtering. 119
10.10 Conversion Factors for Secondary Units 120
10.11 Audit Trail Support 121
10.11.1 Displaying Audit Trail Information 121
10.11.2 Printing Audit Trail Information 121
10.12 Dimension Drawings 122
10.13 Printed Information 126
10.14 Specifications 127
920i Limited Warranty 128

About This Manual

This manual is intended for use by service technicians responsible for installing and servicing $920 i^{\circledR}$ digital weight indicators. This manual applies to Version 4.x of the $920 i$ indicator software.
NOTES: Version 4.x requires Rev E CPU board or newer. Version 4.00 requires Rev E; version 4.01 requires Rev For higher. If using in conjunction with iQUBE 1, use Version 3.x and iRev 3; If using in conjunction with iQUBE 2, use version 4.x and iRev 4.

Configuration and calibration of the indicator can be accomplished using the i Rev $4^{\text {TM }}$ configuration utility, serial commands, or the indicator front panel keys. See Section 3.1 on page 22 for information about configuration methods.

1.0 Introduction

The $920 i$ is a programmable, multi-channel digital weight indicator/controller. The configuration can be performed using the front panel, with an attached $\mathrm{PS} / 2^{\circledR 1}$-type keyboard, or using the iRev 4 utility.
Custom event-driven programs can be written with the iRite language up to 512 K in program size. These programs are compiled with an iRite compiler utility, which can only be downloaded into the indicator. The RLWS Web Update utility can be used to download $920 i$ firmware upgrades to a PC from the RLWS web site; iRev 4 provides functions for installing the new software into the $920 i$.

Onboard Features

Features of the basic $920 i$ include:

- Support for A/D scale or serial scale inputs. The maximum number of scale inputs is 28 ; these can be combined to represent up to 32 scale configurations.
- Six digital I/O channels on main board, each configurable as either input or output.
- Four serial ports on main board (Ports 1-4) support duplex RS-232 up to 115200 bps. Port 2 supports hardware handshaking and remote keyboard input; Ports 3 and 4 support 20 mA output; Port 4 supports 2 -wire RS-485 communications.
- External DB-9 and DIN-8 connectors for serial connection to a PC and attachment of PS/2-type remote keyboard.
- Available in 115 VAC and 230 VAC North American and European versions.

1. $P S / 2^{\circledR}$ is a registered trademark of IBM Corporation.

Some procedures described in this manual require work inside the indicator enclosure. These procedures are to be performed by qualified service personnel only.

Authorized distributors and their employees can view or download this manual from the Rice Lake Weighing Systems distributor site at www.ricelake.com/manuals.
The Operator Card included with this manual provides basic operating instructions for users of the $920 i$. Please leave the Operator Card with the indicator when installation and configuration are

Other features include:

- 62 K of non-volatile RAM can be allocated to databases using the iRev 4 database editor.
- Configurable print formats can be defined for up to 1000 characters each. These formats are used to print gross or net weights, truck in/out weights, setpoint weights, accumulator weights, alert messages, and header information. Additional print formats can be created with iRite.
- Six truck modes to store and recall weights for gross, tare, and net printing. The truck register contains fields for ID number, weight, and the transaction time and date. Weights can be stored permanently or erased at the end of the transaction.
- The setpoint engine supports 31 configurable setpoint kinds. Setpoints can be arranged in a sequential batch routine of up to 100 steps. If setpoints are configured as free running setpoints, they can be tied to program control. This allows for simultaneous batching operations to be written with the iRite language.
The $920 i$ is NTEP-certified for Classes III and III L at 10,000 divisions. See Section 10.14 on page 127 for more information about additional certifications and approvals.

Option Cards

The CPU board provides two slots for installing A/D or other option cards. Additional option cards can be added using either two-card or six-card expansion boards connected to the CPU board via the expansion bus. Available option cards include:

- Single- and dual-channel A/D cards to drive up to sixteen 350Ω load cells per A/D card. A/D cards support both 4 - and 6 -wire load cell connections.
A/D cards are matched to allow interchangeability without having to recalibrate the scale. Calibration includes support for latitude and elevation compensation, millivolt calibration, and five-point linearization.
- Single- or dual-channel Analog output card for $0-10$ VDC or $0-20 \mathrm{~mA}$ tracking of gross or net weight values.
- Dual-channel serial expansion card provides one additional RS-485 port or two ports for either RS-232 or 20 mA communications at up to 19200 bps.
- 24-channel digital I/O expansion card.
- 1MB memory expansion card for expanded database capability.
- Pulse input card for use with pulse count and pulse rate setpoints.
- Dual-channel analog input card supports 0-10 VDC, $0-20 \mathrm{~mA}$, ambient temperature, and four types of thermocouple.
- Bus interface cards for Ethernet, EtherNet/IP ${ }^{\text {TM } 1}$, DeviceNet ${ }^{\text {TM2 }}$, Allen-Bradley Remote I / O^{3}, Profibus ${ }^{\circledR} \mathrm{DP}^{4}$, and ControlNet ${ }^{\text {TM5 }}$ networks.
See Section 2.5 on page 14 for detailed information about expansion board configurations. Part numbers of available option cards and expansion boards are listed in Section 1.4 on page 4.

Front Panel

The $920 i$ front panel, shown in Figure 1-1, consists of a 27-button keypad with a large backlit LCD display. The keys are grouped as five configurable softkeys, five primary scale function keys, four navigation keys, and numeric entry keys. The display can be graphically configured using iRev 4 software.
Weight information is displayed with a graphical scale in six font sizes up to 1.2 inches. Up to four scale widgets can be displayed in legal-for-trade, multiple-scale applications. Status areas on the display

[^0]are used for operator prompts and entering data. The remainder of the display can be graphically configured for representation of a specific application. Display contrast can be adjusted with the LCD contrast potentiometer or CONTRAST parameter..

Figure 1-1. 920i Front Panel

Enclosures

The $920 i$ is available in four enclosures: universal (tilt-stand), deep enclosure, panel mount, and wall mount. Stainless steel enclosures are rated for NEMA 4X/IP66. This manual provides assembly drawings and replacement parts lists for the universal model; supplemental documentation provides information specific to the panel mount and wall mount models (Section 1.4 on page 4).

1.1 Operating Modes

The $920 i$ has two modes of operation:

Normal mode

Normal mode is the weighing mode of the indicator. The indicator displays gross, net, or tare weights as required, using the secondary display to indicate scale status and the type of weight value displayed. Once configuration is complete and a legal seal is affixed to the large fillister-head screw on the indicator enclosure, this is the only mode in which the $920 i$ can operate.

Setup mode

Most of the procedures described in this manual require the indicator to be in setup mode, including configuration and calibration.
To enter setup mode, remove the large fillister head screw from the enclosure. Insert a screwdriver or a similar tool into the access hole and press the setup switch once. The indicator display changes to show scale configuration menus.

1.2 Indicator Operations

Basic 920i operations are summarized below:

Toggle Gross/Net Mode

Press the GROSS/NET key to switch the display mode from gross to net, or from net to gross. If a tare value has been entered or acquired, the net value is the gross weight minus the tare. If no tare has been entered or acquired, the display remains in gross mode.
Gross mode is indicated by the word Gross (or Brutto in OIML mode); net mode is indicated by the word Net.

Toggle Units

Press the UNITS key to switch between primary, secondary, and tertiary units.

Zero Scale

1. In gross mode, remove all weight from the scale and wait for the standstill annunciator ($\mathbf{\Delta} \boldsymbol{\Delta}$).
2. Press the ZERO key. The center of zero ($\rightarrow \mathbf{O} \boldsymbol{4}$) annunciator lights to indicate the scale is zeroed.

Acquire Tare

1. Place container on scale and wait for the standstill annunciator ($\boldsymbol{\Delta}$).
2. Press the TARE key to acquire the tare weight of the container.
3. Display shifts to net weight and shows the word Net on the display.

View Stored Tare Value

The Display Tare softkey must be enabled.

1. Press the Display Tare softkey.

Remove Stored Tare Value

1. Remove all weight from the scale and wait for the standstill annunciator ($\boldsymbol{\Delta}$).
2. Press the TARE key (or, in OIML mode, the ZERO key). Display shifts to gross weight and shows the word Gross.

Print Ticket

1. Wait for the standstill annunciator ($\mathbf{\Delta} \boldsymbol{\Delta}$).
2. Press the PRINT key to send data to the serial port. To print tickets using auxiliary formats, press the number key for the format, then press PRINT. For example, to print using AUXFMT2, press 2, then PRINT.

Accumulator Functions

The accumulator must be enabled before use in either normal mode or setpoint operations. Once enabled, weight (net weight if a tare is in the system) is accumulated whenever a print operation is performed using the PRINT key, digital input, or serial command. The scale must return to zero (net zero if a tare is in the system) before the next accumulation.

The Display Accum softkey can be configured to display the current accumulator value. Printing while the accumulator is displayed, or when the setpoint PSHACCUM function is active, uses the ACCFMT print format (see Section 6.0 on page 62).
Press the CLEAR key twice to clear the accumulator.

1.3 Softkey Operations

Softkeys can be defined to provide additional operator functions for specific applications. Softkey assignments are listed on the tabs shown at the bottom of the LCD display; softkey functions are activated by pressing the arrow keys below the softkey tabs (Figure 1-1 on page 2). The displayed set of softkeys is determined by the indicator configuration and program.

Softkey	Description
Time/Date	Displays current time and date; allows time and date change.
Display Tare	Displays tare value for the current scale
Display Accum	Displays accumulator value, if enabled, for the current scale.
Display ROC	Displays rate-of-change value, if enabled, for the current scale.
Setpoint	Displays a menu of configured setpoints; allows display and change of some setpoint parameters.
Batch Start	Starts a configured batch.
Batch Stop	Stops a running batch and turns off all associated digital outputs. Requires a batch start to resume processing.
Batch Pause	Pauses a running batch. (Same as stop, but digital outputs, if on, are not turned off.)
Batch Reset	Stops a batch and resets it to the first batch step.
Weigh In	Allows truck ID entry; generates weigh-in ticket for truck weighing applications.
Weigh Out	Allows truck ID entry; generates weigh-out ticket for truck weighing applications.
Truck Regs	Displays truck register; allows deletion of individual or all entries. Truck register can be printed by pressing the PRINT key while the truck register is displayed.
Unit ID	Allows display or change of Unit ID.
Select Scale	For multi-scale applications, provides a prompt to enter the scale number to be displayed.
Diagnostics	Provides access to diagnostic displays for attached $i Q U B E^{2}$ junction boxes.
Alibi	Allows previous print transactions to be recalled and reprinted. NOTE: Alibi tracking must be turned on when in OIML mode.

Table 1-1. Configurable Softkeys

Softkey	Description
Contrast	Adjusts the screen contrast.
Test	Future functionality.
Stop	Sends AuxFmt1 out its configured port to prompt a red light on a LaserLight.
Go	Sends AuxFmt2 out its configured port to prompt a green light on a LaserLight.
Off	Sends AuxFmt3 out its configured port to turn a LaserLight red/green light off.
Screen	Allows multiple display screens without a user program.
F1-F10	User-programmable keys; defined by application.
More...	For applications with more than five defined softkeys, the More... key is automatically assigned to the fifth softkey position. Press More... to toggle between softkey groups.

Table 1-1. Configurable Softkeys (Continued)

1.4 Contrast Adjustment

There are two methods for adjusting contrast: a pot which can be manually turned (see Figure 2-3 on page 10), and a digital contrast (CONTRAST parameter, see Figure 3-11 on page 42). Front panel adjustment can be made by assigning the softkey. This is available for Rev H CPU board or higher.
The potentiometer should be adjusted to the center position and the digital contrast used for fine-tuning.

1.5 System Configurations and Options

Table 1-2 lists the $920 i$ system models and part numbers. All models include CPU board with two option card slots, PS/2 and DB-9 comm ports. Each model has a single- or dual-channel A/D card installed in Slot 1.

Feature	Universal	Deep Universal	Panel Mount	Wall Mount
CPU board with two option card slots	X	X	X	X
Single- or dual-channel A/D card in slot 1	X	X	X	X
DIN-8 and DB-9 communications ports	X	X	X	X
25W internal power supply	X			
65W internal power supply		X	X	X
Supports internal 2-card expansion board		X	X	X
Supports internal 6-card expansion board				X
Supports internal relay rack			X	

Table 1-2. 920i Model Features

System Model	Model PNs	
	Single-Channel A/D	Dual-Channel A/D
Universal (tilt stand) model, 115 VAC	67527	69767
Universal (tilt stand) model, 230 VAC, North American, NEMA 15-5 power cord	67615	69772
Universal (tilt stand) model, 230 VAC, European, CEE 7/7 power cord	69522	69774
Deep enclosure model, 115 VAC	82455	82456
Deep enclosure model, 230 VAC, North American, NEMA 15-5 power cord	82457	82458
Deep enclosure model, 230 VAC, European, CEE 7/7 power cord	82459	82460
Panel mount model, 115 VAC	69764	69771
Panel mount model, 230 VAC, North American, NEMA 15-5 power cord	69766	69777
Panel mount model, 230 VAC, European, CEE 7/7 power cord	72137	72138
Wall mount model, 115 VAC	69763	69770

Table 1-3. Part Numbers for 920i Models

System Model	Model PNs	
	Single-Channel A/D	Dual-Channel A/D
Wall mount model, 230 VAC, North American, NEMA 15-5 power cord	69765	69776
Wall mount model, 230 VAC, European, CEE 7/7 power cord	72133	72134
Model designations shown on indicator serial tags include a suffix ($x y$) that describes the enclosure type (x) and power input (y). Codes used for this suffix are as follows: $x: 1 ~=~ D e s k t o p ; ~ 2 ~=~ U n i v e r s a l ; ~ 3 ~=~ W a l l ~ m o u n t ; ~ 4 ~=~ P a n e l ~ m o u n t ; ~ 5 ~=~ D e e p ~ e n c l o s u r e ~$ $y: ~ A ~=~ 115 ~ V A C ; ~ B ~=~ 230 ~ V A C ; ~ C ~=~ 9-36 ~ V D C ; ~ D ~=~ 10-60 ~ V D C ~$		

Table 1-3. Part Numbers for 920i Models

Option Cards

Table 1-4 lists the available $920 i$ option cards. Any of the listed option cards can be installed in Slot 2 of the CPU board or in any available slot of an attached expansion board.

Option Card	PN
Single-channel A/D card	68532
Dual-channel A/D card	68533
Single-channel analog output card	67602
Dual-channel analog output card	103138
Dual serial port expansion card	67604
24-channel digital I/O expansion card	67601
1MB NV RAM memory expansion card	67600
Pulse input card	67603
Ethernet communications card	71986
EtherNet/IP interface card	87803
DeviceNet interface card	68541
Allen-Bradley Remote I/O interface card	68539
Profibus DP interface card	68540
ControlNet interface card	103136
Analog input card with thermocouple input	87697

Table 1-4. Part Numbers for 920i Option Cards

Expansion Boards

Table 1-5 lists the expansion boards available for the panel mount and wall mount enclosures. The panel mount enclosure can accommodate a single 2-card expansion board; the wall mount enclosure supports either a 2 -card or a 6 -card expansion board. Any of the available option cards can be installed in any available expansion board slot.
A second two- or six-card expansion board can also be connected to the $920 i$, providing up to 14 option card slots. Consult factory for details. See Section 2.5 on page 14 for detailed information about slot and serial port assignments for expanded system configurations.

Expansion Board	PN
Two-card expansion board for panel mount enclosure, slots 3-4. Includes 2-inch, 34-pin ribbon cable and power supply cable.	71743
Two-card expansion board for wall mount enclosure, slots 3-4. Includes 24-inch, 34-pin ribbon cable and power supply cable.	69782
Six-card expansion board for wall mount enclosure, slots 3-8. Includes 16-inch, 34-pin ribbon cable and power supply cable.	69783

Table 1-5. Part Numbers for 920i Expansion Boards

Relay Options

8 -, 16 -, and 24 -channel relay racks are available for all $920 i$ systems. Relays can be installed internally in the wall mount enclosure; all other models require an external enclosure for the relays. Consult factory for details.

DC Power Supplies

Two DC power supplies are available for mobile $920 i$ applications:

PN 97474, 9-36 VDC supply
PN 99480, 10-60 VDC supply
Consult factory for more information.

Outdoor Display

An optional display, PN 100759, is available for applications requiring use of the $920 i$ in bright, sunlit environments. Consult factory for details.

1.6 Summary of Changes

Changes to recent editions of this manual are listed below:

Version 4.01

- HWSUPPORT returns (see Section 9.1.2 on page 90).
- The new CPU board (PN 109549) was designed to take advantage of newer technology and eliminate any parts that are at
end-of-life stage.
- There is no SDRAM module on the back side as the memory is now on the main board.
- Added two additional DIO points, 5 and 6.
- The new boot monitor V1.13 has mapping for the new memory.
- The new board requires minimum version 3.14 or newer. Version 3.14 supports $i Q U B E$ while 4.xx supports $i Q U B E^{2}$.

Version 4.0

- Added support for $i Q U B E^{2}$ and removed support for $i Q U B E$.
NOTE: Version 4.0 requires Rev E CPU board or newer.

Version 3.13

- Added a new value <AN> to the Print Formatting section of the manual (see Section 6.1 , Table 6-1 on page 60).
- Corrected comparisons to reduce the number of power-up calibrations counted by Audit Trail.
- Added the speed-up of loading a user program by only erasing needed memory blocks.

Version 3.10

- Error Recovery - version 3.10.00 of the 920i now has a very sophisticated error recovery for the battery backed NVRAM. when a Save and Exit is performed after a Configuration and Calibration is performed, a copy of the NVRAM is stored in Flash for future recovery. If the 920 i is powered off at any time and the battery is not at peak performance, the NVRAM could come up with corrupted data. The next time the 920i is powered up, the NVRAM is tested for a correct CRC checksum. If this is bad, there will be a special screen displayed showing the corrupt locations with directions to press ENTER to continue. The core will rewrite to NVRAM using the last copy of the last Save and Exit. At this time Date and Time are also checked. It will then open the Date/Time full screen edit function so the operator can check the current Date and Time. If correct, all that is needed is an ENTER key to continue. If incorrect, the operator can adjust the Date or Time and then push ENTER to continue.
To ensure the latest copy of NVRAM is available for a power up, it is recommended that before powering down the 920 i for either overnight outage or temporary storage, the unit should be put into setup mode and a Save and Exit performed which will save a new copy of the NVRAM. On Legal-For-Trade units, if this cannot be performed, then the
system will use the last Save and Exit and all databases and truck data should be uploaded to a PC prior to powering the 920i down.
- Removed the EXIT key during Setup mode.
- Added a progress message during the clear of memory and loading a user program (see Section 5.6 .1 on page 61)

Version 3.09

- The battery replacement procedure has been updated (see Section 2.9 on page 16).
- A TOKENS parameter has been added to the SERIAL menu to allow changing the data stream tokens from the indicator front panel (see Section 3.2.2 on page 37).
- Values for SWAP parameter on the FLDBUS menu have been changed to allow greater flexibility in byte-swapping for fieldbus cards (see Section 3.2.8 on page 53).
- Improved database handling. Database access by multiple simultaneous requests is now controlled by allowing one read or write operation at a time, on a first-come, first-served basis.

Version 3.08

- A new value, KBDPRG, on the Port 2 serial menu allows keyboard scans to be passed directly to an iRite user program (see Figure 3-8 on page 37).
- Support for negative tracking has been added to the ALGOUT menu (see Section 3.2.7 on page 52).
- A new stream token, Z, has been added to the <S> stream format status identifiers to indicate center-of-zero (see Table 10-8 on page 112).

Version 3.07

- Support has been added for the dual-channel analog output card (PN 103138) and the ControlNet interface card (PN 103136).
- New OVRBASE parameter, on the REGULAT submenu of the FEATURE menu, allows specification of calibrated or scale zero as the base for overload calculation. See page 47 for more information.
- A new top-level menu, FLDBUS, is now shown if a DeviceNet, Profibus, EtherNet/IP, or ControlNet is installed.The two parameters under the FLDBUS menu allow byte swapping to be enabled (SWAP parameter) and for the transfer size of the swapped bytes to be specified (DATASIZE). See Section 3.2.8 on page 53 for more information.
- The default A/D sample rate (SMPRAT parameter on the SCALES menu) has been
changed from 120 to 30 Hz .
- The KEXIT command has been removed and replaced with KSAVEEXIT. (See Section Table 9-1. on page 89.)
- Error codes returned on the XE serial command have been updated (see Table 10-3 on page 108).

Version 3.05-3.06

- Support for local/remote indicator configurations provides function equivalent to a legal-for-trade remote display with keypad for truck scale and similar applications. See Section 10.5 on page 111 for more information.
- The description for setting rate of change (ROC) parameters has been changed. See Table 3-3 on page 31 for details.
- New values have been added to the STREAM parameter on the SERIAL menu to allow streaming of keypad events to another indicator (4KEYS, KEYPAD) and, for the local/remote function, to send the complete display image (DISPLAY). See Section 3.2.2 for more information.
- Reprinting of any previous print transaction is now supported by the alibi feature. The feature is enabled using the ALIBI parameter on the FEATURE menu; print transactions can be recalled by assigning an Alibi softkey, also configured using the FEATURE menu (see Section 3.2.3 on page 42).
- New IMAGE parameter on the FEATURE menu allows inversion of the display image (blue-on-white or white-on-blue) for support of the outdoor display option. See Section 3.2.3.
- Display and printing of audit trail information is described in Section 10.11 on page 121.

Version 3.00

- The desktop model of the $920 i$ has been discontinued. Drawings and parts lists for the desktop model have been removed from this manual.
- Added support for multi-range and multi-interval scale configurations.
- Zero tracking, zero range, and motion band parameters (SCALES menu) have been changed to allow numeric values.
- Added peak hold function to SCALES menu.
- Added last zero and temporary zero functions to calibration menus to allow recalibration based on previous zero values.
- Enhanced print formatting with addition of audit format and twenty auxiliary formats.
- The SERIAL menu has been restructured to provide additional parameters for configuring RS-485 communications. See Figure 3-10 on
page 39.
- A new digital input count (DINCNT) setpoint, used to count digital input pulses, has been added to the supported setpoint kinds. See Section 8.0 on page 70 .
- A SENSE parameter has been added to optionally invert the value of setpoint digital outputs. See Section 8.0 on page 70 .
- TRIGGER (digital output trigger) has been added as a selection under the DIG I/O menu (see Section 3.2.6 on page 50) for custom applications.
- Support has been added for EtherNet/IP and analog input/thermocouple option cards.

1.7 Hardware and Software Compatibility

- CPU board revision A-D was the initial release and covered versions 1 and 2.
- Revision E was the release of version 3 which had a minimum CPU revision, increasing memory.
- Revisions F-G used the final version of the old CPU hardware build.
- Revision H boards are of the new design for the replacement of PN 67612. The new CPU board is PN 109549 and requires a minimum core of 3.14.00.

Important Information Regarding Your 920i CPU Board

Because select components of the 920i CPU have recently become obsolete, certain design changes have become unavoidable. Therefore, please be aware that beginning with Revision H, the CPU board will support only firmware 3.14 or higher. This does not affect any pre-existing user programs, and any performance issues should immediately be brought to the attention of Rice Lake Weighing Systems.

CPU Board Revision	Recommended Boot Monitor	Minimum Core	Maximum Core
A-D	1.00	1.00 .00	2.08 .00
E	1.10	1.00 .00	4.00 .00
F-G	1.12	1.00 .00	4.01 .00
H	1.13	3.14 .00	4.01 .00

Table 1-6. Hardware and Software Compatibility

2.0 Installation

This section describes procedures for connecting load cell, digital I/O, and serial communications cables to the $920 i$ indicator. Assembly drawings and replacement parts lists for the universal model are included for the service technician. See Section 10.12 on page 122 for dimension drawings of the all models.

\triangle Cution

- Use a wrist strap to ground yourself and protect components from electrostatic discharge (ESD) when working inside the indicator enclosure.
- This unit uses double pole/neutral fusing which could create an electric shock hazard. Procedures requiring work inside the indicator must be performed by qualified service personnel only.
- The supply cord serves as the power disconnect for the $920 i$. The power outlet supplying the indicator must be installed near the unit and be easily accessible.

2.1 Unpacking and Assembly

Immediately after unpacking, visually inspect the $920 i$ to ensure all components are included and undamaged. The shipping carton should contain the indicator, this manual, and a parts kit. If any parts were damaged in shipment, notify Rice Lake Weighing Systems and the shipper immediately.
See Section 2.10 on page 17 for parts kit contents.

2.2 Enclosure Disassembly

The indicator enclosure must be opened to install option cards and to connect cables for installed option cards.
> ! Warning
> The 920i has no on/off switch. Before opening the unit, ensure the power cord is disconnected from the power outlet.

Ensure power to the indicator is disconnected, then place the indicator face-down on an antistatic work mat. Remove the screws that hold the backplate to the enclosure body, then lift the backplate away from the enclosure and set it aside.

2.3 Cable Connections

The universal model of the $920 i$ provides six cord grips for cabling into the indicator: one for the power cord, five to accommodate cabling for option cards. Install plugs in all unused cord grips to prevent moisture from entering the enclosure.

2.3.1 Cable Grounding

Except for the power cord, all cables routed through the cord grips should be grounded against the indicator enclosure. Do the following to ground shielded cables:

- Use the lockwashers, clamps, and kep nuts provided in the parts kit to install grounding clamps on the enclosure studs adjacent to cord grips. Install grounding clamps only for cord grips that will be used; do not tighten nuts.
- Route cables through cord grips and grounding clamps to determine cable lengths required to reach cable connectors. Mark cables to remove insulation and shield as described below:
- For cables with foil shielding, strip insulation and foil from the cable half an inch (15 mm) past the grounding clamp (see Figure 2-1). Fold the foil shield back on the cable where the cable passes through the clamp. Ensure silver (conductive) side of foil is turned outward for contact with the grounding clamp.
- For cables with braided shielding, strip cable insulation and braided shield from a point just past the grounding clamp. Strip another half inch (15 mm) of insulation only to expose the braid where the cable passes through the clamp (see Figure 2-1).

Figure 2-1. Grounding Clamp Attachment for Foil-Shielded and Braided Cabling

- For load cell cables, cut the shield wire just past the grounding clamp. Shield wire function is provided by contact between the cable shield and the grounding clamp.
- Route stripped cables through cord grips and clamps. Ensure shields contact grounding clamps as shown in Figure 2-1. Tighten grounding clamp nuts.
- Finish installation using cable ties to secure cables inside of indicator enclosure.

2.3.2 Load Cells

To attach cable from a load cell or junction box to an installed A/D card, route the cable through the cord grip and ground the shield wire as described in Section 2.3.1 on page 8.
Next, remove connector J1 from the A/D card. The connector plugs into a header on the A/D card (see Figure 2-2). Wire the load cell cable from the load cell or junction box to connector J1 as shown in Table 2-1.

Figure 2-2. Single-Channel A/D Card
If using 6 -wire load cell cable (with sense wires), remove jumpers JP1 and JP2 before reinstalling connector J1. For 4-wire installation, leave jumpers JP1 and JP2 on. For 6-wire load cell connections on dual-channel A/D cards, remove jumpers JP3 and JP4 for connections to J2.

When connections are complete, reinstall load cell connector on the A / D card and use two cable ties to secure the load cell cable to the inside of the enclosure.

A/D Card Connector Pin	Function
1	+ SIG
2	- SIG
3	+ SENSE
4	- SENSE
5	+ EXC
6	- EXC

- For 6-wire load cell connections to connector J1, remove jumpers JP1 and JP2.
- For 6-wire load cell connections to connector J2 (dual A/D cards), remove jumpers JP3 and JP4.

Table 2-1. A/D Card Pin Assignments

2.3.3 Serial Communications

The four communications ports on the $920 i$ CPU board support full duplex RS-232, 20 mA output, or RS-485 communications at up to 115200 bps .
To attach serial communications cables, route the cable through the cord grip and ground the shield wire as described in Section 2.3.1 on page 8. Remove the serial connector from the CPU board and wire to the connector. Once cables are attached, plug the connector into the header on the board. Use cable ties to secure serial cables to the inside of the enclosure.
Table 2-2 shows the pin assignments for Ports 1, 3, and 4. Port 2 provides DIN-8 and DB-9 connectors for remote keyboard attachment of PS/2-type personal computer keyboards (see Figure 2-3; see Section 1.4 on page 4 for Contrast information). The DB-9 connector pin assignments for Port 2 are shown in Table 2-3; see Section 10.3 on page 110 for information about the PS/2 keyboard interface.

Connector	Pin	Signal	Port
$J 11$	1	GND	1
	2	RS-232 RxD	
	3	RS-232 TxD	
J9	1	GND / -20mA OUT	3
	2	RS-232 RxD	
	3	RS-232 TxD	
	4	+20mA OUT	
$J 10$	1	GND / -20mA OUT	4
	2	RS-232 RxD	
	3	RS-232 TxD	
	4	+20mA OUT	
	5	RS-485 A	
	6	RS-485 B	

Table 2-2. Serial Port Pin Assignments
Serial ports are configured using the SERIAL menu. See Section 3.2.2 on page 37 for configuration information.

An optional dual-channel serial communications expansion card, PN 67604, is also available. Each serial expansion card provides two additional serial ports, including one port that supports RS-485 communications. Both ports on the expansion card can support RS-232 or 20 mA connections.

DIN-8 Connector for PS/2 Remote Keyboard

Figure 2-3. Interface Board Connections

DB-9 Pin	Signal
2	TxD
3	RxD
5	GND
7	CTS
8	RTS

Table 2-3. DB-9 Connector Pin Assignments

Figure 2-4. Interface Board, Top View

J4 Pin	Color	Signal
1	Brown	Clock
2	Clear	+5 v
3	Yellow	GND
4	Red	Data

Table 2-4. J4 (Optional Keyboard Connector) Pin Assignments

Figure 2-5. 920i Rev G CPU Board

Figure 2-6. 920i Rev H CPU Board

2.3.4 Digital I/0

Digital inputs can be set to provide many indicator functions, including all keypad functions. Digital inputs are active low (0 VDC), inactive high (5 VDC). Digital outputs are typically used to control relays that drive other equipment. Outputs are designed to sink, rather than source, switching current. Each output is a normally open collector circuit, capable of sinking 24 mA when active. Digital outputs are wired to switch relays when the digital output is active (low, 0 VDC) with reference to a 5 VDC supply.

J2 Pin	J2 Signal
1	+5 VDC
2	GND
3	DIO 1
4	DIO 2
5	DIO 3
6	DIO 4
7	DIO 5
8	DIO 6

Table 2-5. J2 Pin Assignments (Digital I/O)

Digital inputs and outputs are configured using the DIG I/O menu. See Section 3.2.6 on page 50 for configuration information.
An optional 24-channel digital I/O expansion card, PN 67601, is available for applications requiring more digital I/O channels.
NOTE: Digital I/O points can be configured to count active pulse inputs by setting them to PROGIN (DIGIN menu) and using the iRite DigInSsBbActivate handler with a timer to turn the handler on and off. However, the fastest pulse rate that can be counted using a digital input is 10 Hz (10 pulses per second). More demanding applications can use the pulse input option card (PN 67603) to count pulses in the $4-4000 \mathrm{~Hz}$ range.

2.4 Installing Option Cards

Each option card is shipped with installation instructions specific to that card. The general procedure for all option cards is as follows:
\triangle Caution
Option cards are not hot-pluggable. Disconnect power to the $920 i$ before installing option cards.

1. Disconnect power to the indicator. Remove backplate as described in Section 2.2 on page 8.
2. Carefully align the large option card connector with connector J5 or J6 on the CPU board (see Figure 2-7). Press down to seat the option card in the CPU board connector.
3. Use the screws provided in the option kit to secure the other end of the option card to the threaded standoffs on the CPU board (see Figure 2-7).
4. Make connections to the option card as required. Use cable ties to secure loose cables inside the enclosure as shown in Figure 2-8. When installation is complete, reassemble the enclosure as described in Section 2.6 on page 15 .

Figure 2-7. Installing Option Card Onto CPU Board

Figure 2-8. Installed Option Cards, Showing Secured Cables

The $920 i$ automatically recognizes all installed option cards when the unit is powered on. No hardware-specific configuration is required to identify the newly-installed card to the system.

2.5 Expansion Board Configurations

Two- and six-card expansion boards allow up to fourteen option cards to be attached to the $920 i$. Figures 2-9 through 2-11 show the slot numbers assigned for various combinations of two- and six-card expansion boards. A single six-card expansion board is assigned slots 3-8.

Figure 2-9. CPU Board with Two-Card Expansion Board

Figure 2-10. CPU Board with Two- and Six-Card Expansion Boards

Figure 2-11. CPU Board with Two Six-Card Expansion Boards

NOTES:

- The maximum number of option board slots is fourteen: two onboard slots, plus two six-card expansion boards.
- The two-card expansion board is always placed at the end of the expansion bus. No more than one two-card expansion board can be used in any system configuration.
- The panel mount enclosure can accommodate a single two-card expansion board.
- The wall mount enclosure can accommodate a two-card and/or a six-card expansion board.
- Systems using two six-card expansion boards are housed in a custom enclosure.

Expansion Board Serial Port Assignments

Serial port numbers are reserved for each option card slot, regardless of the type of cards actually installed. Two port numbers are reserved for each slot that could contain a dual-channel serial expansion card. Table 2-6 shows the port numbers assigned to each slot.

Slot Number	Serial Port Assignments
CPU board	$1-4$
1	$5-6$
2	$7-8$
3	$9-10$
4	$11-12$
5	$13-14$
6	$15-16$
7	$17-18$
8	$19-20$
9	$21-22$
10	$23-24$
11	$25-26$
12	$27-28$
13	$29-30$
14	$31-32$

Table 2-6. Expansion Board Serial Port Assignments
For example, in a system with a two-card expansion board, port assignments are reserved as shown in Figure 2-12. If the only serial card installed in this system is in SLOT 4 of the expansion board, the system consists of serial ports 1-4 (on the CPU board) and ports 11-12.

Figure 2-12. Serial Port Assignments, Two-Card Expansion Board

2.6 Enclosure Reassembly

Once cabling is complete, position the backplate over the enclosure and reinstall the backplate screws. Use the torque pattern shown in Figure 2-13 to prevent distorting the backplate gasket. Torque screws to 15 $\mathrm{in}-\mathrm{lb}(1.7 \mathrm{~N}-\mathrm{m})$.

Figure 2-13. 920i Enclosure Backplate
Torqued screws may become less tight as the gasket is compressed during torque pattern, therefore a second torque is required using the same pattern and torque value.

2.7 CPU Board Removal

If you must remove the $920 i$ CPU board, use the following procedure:

1. Disconnect power to the indicator. Remove backplate as described in Section 2.2 on page 8.
2. Unplug connectors J9, J10, and J11 (serial communications), J2 (digital I/O), P1 (power supply), and connectors to any installed option cards.
3. Remove any installed option cards.
4. Remove the five phillips head screws and two kep nuts from the CPU board.
5. Gently lift up the CPU board, then disconnect connectors J12 (power to display), J4 (ribbon cable, J3 (keypad connector), then the cable J8 (Port 2 serial port).
6. Remove CPU board from the enclosure. If necessary, cut cable ties to shift cables out of the way.
To replace the CPU board, reverse the above procedure. Be sure to reinstall cable ties to secure all cables inside the indicator enclosure.

2.8 Fuse Replacement

Fuses for the universal and deep enclosure models of the $920 i$ are located under a cover plate on the outside of the enclosure. Remove the cover plate, replace the fuses, and reinstall the cover plate (see Figure 2-14).

\triangle Caution

 To protect against the risk of fire, replace fuses only with same type and rating fuse.See Section 10.14 on page 127 for complete fuse specifications.

Interface board and fuse access cover plates must be in place for use in NEMA 4XIP66 applications.
1
Torque fuse and interface board access covers to 8 in-Ib ($0.90 \mathrm{~N}-\mathrm{m}$)

Figure 2-14. Interface Board and Fuse Locations, Universal Model

2.9 Battery Replacement

The lithium battery on the CPU board maintains the real-time clock and protects data stored in the system RAM when the indicator is not connected to AC power.
Data protected by the CPU board battery includes time and date, truck and tare memory, onboard database information, and setpoint configuration.
Use iRev 4 to store a copy of the indicator configuration on a PC before attempting battery replacement. If any data is lost, the indicator configuration can be restored from the PC.

NOTE: Memory option card data is also protected by a lithium battery. All database information stored on a memory card is lost if the memory card battery fails.
Watch for the low battery warning on the LCD display and periodically check the battery voltage on both the CPU board and on any installed memory option cards. Batteries should be replaced when the indicator low battery warning comes on, or when battery voltage falls to 2.2 VDC. Life expectancy of the battery is ten years.

Removal (Applies to Rev H Board)

Place the tip of your finger in the notched area near the battery retaining spring and slide the battery out of position on the CPU board.

Figure 2-15. Battery Removal

Replacement

Before replacing the battery, place the indicator in setup mode, then press SAVE/EXIT to save battery-backed memory (NVRAM) to flash. This operation saves the latest configuration information, including setpoint values, stored strings and data, and the onboard database, to flash memory.
Return to weigh mode, power off the indicator, and replace the battery. Use care not to bend the battery retaining spring.
When power is restored, a message is shown stating that battery-backed memory is corrupt. Press ENTER to restore the values saved in flash memory.
See Figure 2-6 on page 12 for CPU board battery location and orientation (positive side up).

\triangle Caution

Danger of exposion if batter is incorrectly replaced. Replace only with the same or equivialent type recommended by the manufacturer. Dispose of unused batteries according to the manufacturer's instructions.

2.10 Parts Kit Contents

Table 2-7 lists the parts kit contents for the universal model of the 920 i .

PN	Description
14626	Kep nuts, 8-32NC (4)
14862	Machine screws, 8-32NC x 3/8 (12)
45042	Sealing washers (14)
15133	Lock washers, No. 8, Type A (4)
30623	Machine screws, 8-32NC x 7/16 (2)
15631	Cable ties (4-single A/D, 6-dual A/D)
15665	Reducing glands for 1/2 NPT cord grips (2)
15887	6-position screw terminal for load cell connection (1-single A/D, 2-dual A/D)
19538	Cord grip plugs (4-single A/D, 3-dual A/D)
42350	Capacity label (1-single A/D, 2-dual A/D)
53075	Cable shield ground clamps (4)
70599	6-position screw terminal for J2 (1)
77180	8-position screw terminal for J10 (1)
71126	4-position screw terminal for J9 and optional keyboard connection (2)
71125	3-position screw terminal for J11 (1)
42149	Rubber feet for tilt stand (4)
15144	Nylon washers for tilt stand, 1/4 x 1 x 1/16 (2, universal model only)
68403	Wing knobs for tilt stand (2)

Table 2-7. Parts Kit Contents

2.11 Replacement Parts and Assembly Drawings

Table 2-8 lists replacement parts for the $920 i$ universal enclosure model, including all parts referenced in Figures 2-16 through 2-18. For assembly drawings and replacement parts information for other enclosures, see the $920 i$ Panel Mount Installation Instructions, PN 69989 and the 920i Wall Mount Installation Instructions, PN 69988.

Ref Number	PN	Description (Quantity)	See Figure
1	67529	Enclosure, universal (1)	2-16
3	67614	LCD display (1)	
4	68425	Fuse access coverplate (1)	
5	68621	Fuse access coverplate gasket (1)	
6	67886	Standoffs, short (4)	
7	68661	Standoffs, long (2)	
8	117930	CPU board (1); Board marked as 109549; sold as PN 117930	
9	14618	Kep nuts, 4-40NC (2)	
10	67613	Power supply, $\pm 6 \mathrm{VDC}, 25 \mathrm{~W}$ (1)	
-	85791	Replacement power supply fuse (1)	
11	67536	Power supply bracket (1)	
12	16861	High voltage warning label (1)	
13	14624	Lock nuts, 6-32NC, nylon (2)	
14	14822	Machine screws, 4-40NC $\times 1 / 4$ (11)	
15	67530	Interface board connector plate (1)	
16	67535	Interface board gasket (1)	
17	14862	Machine screws, 8-32NC $\times 3 / 8$ (4)*	
18	75062	Sealing washers (12)*	
19	32365	Setup switch access screw, $1 / 4 \times 20 \mathrm{NC} \times 1 / 4$ (1)	
20	44676	Sealing washer for setup switch access screw (1)	
21	15626	Cord grips, PG9 (3)	
22	15627	Lock nuts, PCN9 (3)	
23	30375	Nylon seal rings for PG9 cord grips (3)	
25	15134	Lock washers, No. 8, Type A (3)	2-17
26	14626	Kep nuts, 8-32NC (3)*	
27	45043	Ground wire, 4 in w/ No. 8 eye connector (1)	
28	68424	Enclosure backplate, universal (1)	2-16
29	67532	Backplate gasket, universal (1)	2-16
30	15631	Cable tie, 3-in nylon (1)*	2-18
31	67795	Power cord assembly, 115 VAC and 230 VAC North American units (1)	2-16
	69998	Power cord assembly, 230 VAC European units (1)	-
32	67796	Power supply cable assembly, to CPU board (1)	2-17
33	68662	Ribbon cable to interface board, universal (1)	2-17
34	16892	Ground/Earth label (1)	2-17
35	15650	Cable tie mounts, 3/4 in. (4)	
40	53308	Model/serial number label (1)	
41	68532	Single-channel A/D card (1, can be single- or dual-channel A/D)	-
	68533	Dual-channel A/D card (1, can be single- or dual-channel A/D)	2-16

Table 2-8. Replacement Parts

Ref Number	PN	Description (Quantity)	See Figure
43	71027	Fuses (115 VAC models), 2 A Time-Lag TR5 (2)	2-16
	71026	Fuses (230 VAC models), 2 A Time-Lag TR5 (2)	
45	67869	Interface board (1)	2-17
46	14832	Machine screws, 4-40NC $\times 3 / 8$ (2)	
47	22086	Machine screws, 6-32NC x 1/4 (8)	2-16
50	15628	Cord grips, 1/2 NPT (2)	
52	30376	Nylon seal rings for 1/2 NPT cord grips (2)	
53	15630	Lock nuts for 1/2 NPT cord grips (2)	
54	70069	3V Lithium coin battery	2-18
55	69898	Nylon spacers (4)	2-16
-	66502	Switch panel membrane (1)	
-	87249	Backlight	
-	97257	16M SDRAM replacement SIMM (1) Older CPU boards with 4M SDRAM SIMMs must be upgraded to the 16M SDRAM to run Version 3 software or higher.	-
* Additional parts included in parts kit. To protect against the risk of fire, replace fuses only with same type and rating fuse. See Section 10.14 on page 127 for complete fuse specifications.			

Table 2-8. Replacement Parts (Continued)

Figure 2-16. 920i Universal Model Assembly

Figure 2-17. 920i Universal Model CPU Board and Power Supply Components

Figure 2-18. 920i Universal Model, Back View with Backplate Removed

3.0 Configuration

To configure the $920 i$ indicator, the indicator must be placed in setup mode. The setup switch is accessed by removing the large fillister head screw on the backplate of the universal and deep enclosures. Switch position is changed by inserting a screwdriver into the access hole and pressing the switch.

When the indicator is placed in setup mode, a series of menus is shown across the top of the display, along with the words Scale Configuration. The SCALES menu is highlighted as the first used to configure the indicator. Detailed descriptions of these menus are provided in Section 3.2.
When configuration is complete, press the Save and Exit softkey to exit setup mode, then replace the setup switch access screw.

3.1 Configuration Methods

The $920 i$ indicator can be configured by using the front panel keys to navigate through a series of configuration menus or by sending commands or configuration data to an indicator serial port. Configuration using the menus is described in Section 3.1.3.
Configuration using the serial port can be accomplished using either the serial command set described in Section 9.0 or the $i \operatorname{Rev} 4$ configuration utility.
NOTE: Some configuration parameters, such as those used to configure the $920 i$ display and widgets, cannot be accessed through the configuration menus. iRev 4 provides the most complete and efficient configuration interface for the $920 i$.

3.1.1 iRev Configuration

The $i \operatorname{Rev} 4$ configuration utility provides the preferred method for configuring the $920 i$ indicator. i Rev 4 runs on a personal computer to set configuration parameters for the indicator. When iRev 4 configuration is complete, configuration data is downloaded to the indicator.
iRev 4 supports both uploading and downloading of indicator configuration data. This capability allows configuration data to be retrieved from one indicator, edited, then downloaded to another indicator with an identical hardware configuration.

NOTES: If using iQUBE 1, use iRev 3. If using iQUBE ${ }^{2}$ or no iQUBE, use iRev 4.

You cannot use iRev 3 to edit a file created in $i R e v$ 4. iRev must be newer or the same version as the file being opened.

Figure 3-1. iRev Hardware Configuration Display
To use $i \operatorname{Rev} 4$, do the following:

1. Install iRev 4 on an IBM-compatible personal computer. See Section 5.0 on page 59 for detailed hardware and software requirements.
2. With both indicator and PC powered off, connect the PC serial port to the RS-232 pins on the indicator serial port.
3. Power up the PC and the indicator. Use the setup switch to place the indicator in setup mode.
4. Start the iRev 4 program.
iRev 4 provides online help for each of its configuration displays. Parameter descriptions provided in this manual for front panel configuration can also be used when configuring the indicator using iRev 4: The interface is different, but the parameters set are the same.

See Section 5.0 on page 59 for more information about using iRev 4 to configure the $920 i$.

3.1.2 Serial Command Configuration

The serial command set can be used to configure the $920 i$ indicator using either a personal computer, terminal, or remote keyboard. Like iRev 4, serial command configuration sends commands to the indicator serial port; unlike iRev 4, serial commands can be sent using any external device capable of sending ASCII characters over a serial connection.
Serial commands duplicate the functions available using the indicator front panel and provide some functions not otherwise available. Serial commands can be used to simulate pressing front panel keys, to configure the indicator, or to dump lists of parameter settings. See Section 9.0 on page 89 for more information about using the serial command set.

3.1.3 Front Panel Configuration

Use the CONFIG submenu under the SCALES menu to configure A/D scales. For example, in an indicator with a single-channel A/D card installed in Slot 1, the Scale Configuration display will show the A/D listed (Slot 1 Channel 1) under the AVAILABLE A/D's column. Use the left navigation key to select the A / D, then press the center softkey, Add. The A/D is then moved to the Associated A/D's column. If no other A/D's are listed in the AVAILABLE A/D's column, the center softkey changes to Done, as shown in Figure 3-2. Press Done to exit the Scale Configuration display.

See Section 10.4 on page 111 for information about configuring serial scales.

Figure 3-2. Scale Configuration Display

3.1.4 Multi-Range and Multi-Interval Scales

The $920 i$ supports multi-range and multi-interval scales of either two or three ranges or intervals.

Multi-range scales provide two or three ranges, each extending from zero to the maximum capacity specified for the range, that can specify different scale intervals (graduations). The scale interval changes as the applied weight increases but does not reset to lower range intervals until the scale returns to zero.
Multi-interval scales divide the scale into two or three partial weighing ranges, each with different scale intervals. The scale interval changes with both increasing and decreasing loads applied.
To configure a multi-range or multi-interval scale, use the SPLIT parameter to select 2RNG or 3RNG (for multi-range scales), or 2INTVL or 3INTVL (for multi-interval scales). Selecting a SPLIT value other than OFF allows specification of decimal point, display divisions, and maximum capacity for each range or interval.
The SPLIT parameter is used to enable multi-range or multi-interval. The SPLIT parameter is in the SCALES menu, see Figure 3-4, and Table 3-2. After setting the SPLIT parameter, the Format menu selection will change as shown in Figure 3-6, and Table 3-4.
If using streaming with multi-range or multi-interval, the stream must be set to Custom in iRev 4. The Tokens for Secondary and Tertiary Units must be set to L or K to match the Primary, refer to the Serial Menu, Tokens Parameter, in Section 3.2.2 on page 37. They can be set using iRev 4 or through the front panel.
In multi-range, each range has its own capacity and display division, extending from zero. The scale display division will increase at the entered range capacities, either two or three ranges. Once the range has increased to the next level, the display division will remain in new range until the scale returns to zero. The tare value can be taken in any range.
For example,

```
Range 1 is 0-3000 < 1 lb.
Range 2 is 0-10,000 < 5 lb.
```

In multi-interval, the scale has one capacity, which is segmented into weighing intervals, either two or three intervals, each with different display division sizes. As the weight value exceeds an interval or set interval, the display division will increase, as the weight falls below an interval or set interval, the display division will decrease. The tare can only be taken in the first interval.
For example,
Range 1 is $0-30 \times 0.01 \mathrm{lb}$.
Range 2 is $30-60 \times 0.02 \mathrm{lbs}$.

3.1.5 Total Scale Configuration

The output of two or more A/D scales or $i Q U B E^{2}$ systems can be configured to function as a total scale. Once configured and calibrated, the total scale can be used as a source for other system functions, including streaming, setpoints, print formatting, and analog output.
To set up a total scale from the indicator front panel, use the scale configuration display (see Figure 3-2) to select the A/D scales or $i Q U B E^{2}$ systems to configure as a total scale. (Use the Change Type softkey to show available A/D scales or $i Q U B E^{2}$ systems; use the right navigation key to select the total scale sources.) In iRev 4, assign the total scale to an unused position then select source scales from the existing A/D scales or $i Q U B E^{2}$ systems.
The FORMAT configuration of the total scale (see Figure 3-5 on page 30) should match that of the source scales. However, the value specified for the total scale GRADS parameter should be specified as the sum of the GRADS values for the source scales. For example: if SCALE 1 is set to GRADS $=10000$, SCALE 2 to GRADS=5000, SCALE 3 (the total scale) should be set to 15000 grads.

The total scale will show an over-range indication if the maximum capacity of any source scale is exceeded, and show dashes if any source scale reads a negative value. Source scales will respond to Tare and Zero operations performed on the total scale.

3.2 Menu Structures and Parameter Descriptions

The $920 i$ indicator can be configured using a series of menus accessed through the indicator front panel when the indicator is in setup mode. Figure 3-1 summarizes the functions of each of the main menus.

Menu		
SCALES	Configuration	Configure and calibrate scales.
SERIAL	Serial	Configure communications ports.
FEATURE	Feature	Set date and time formats, truck mode, passwords, keyboard locks, regulatory mode, and initial consecutive number value, define softkeys and setpoint prompts.
PFORMT	Print Format	Set print format used for header, gross, net, truck in/out, setpoint, and auxiliary ticket formats. See Section 6.0 on page 62 for more information.
SETPTS	Setpoints	Configure setpoints and batching mode.
DIG I/O	Digital I/O	Assign digital input/output functions.
ALGOUT	Analog Output	Configure analog output module. Shown only if analog output option is installed.
FLDBUS	Fieldbus	Configure fieldbus parameters for Profibus, DeviceNet, EtherNet/IP, and ControlNet communications. Shown only if one of the listed fieldbus cards is installed.
VERSION	Version	Display installed software version number. The Reset Config softkey on the Version menu can be used to restore all configuration parameters to their default values.

Table 3-1. 920i Menu Summary
The following sections provide graphic representations of the $920 i$ menu structures and tables describing the menu parameters. Default values are shown in bold type; numeric ranges and string values are shown in italic type. Parameters shown surrounded by a dotted-line box only appear under the special circumstances explained under each box.

Figure 3-3. Configuration Menu Flow

3.2.1 SCALES Menu

The SCALES menu is shown in Figure 3-4. The FORMAT submenu is shown in Figure 3-5 on page 30; the CALIBR submenu is shown in Figure 3-7 on page 36. Parameters shown in each diagram are described in the table following that diagram.

Figure 3-4. SCALES Menu

SCALES Menu		
Parameter	Choices	Description
Level 2 submenus		
SCALEx		Allows configuration and calibration of each scale
CONFIG		Lists available and associated A/Ds
Level 3 submenus		
GRADS	$\begin{aligned} & 10000 \\ & 1-9999999 \end{aligned}$	Specifies the number of full scale graduations if SPLIT=OFF. (For multi-range and multi-interval scales (SPLIT \neq OFF), the GRADS value is derived from the capacity and display divisions specified for the range or interval.) The value entered must be in the range 1-9999999 and should be consistent with legal requirements and environmental limits on system resolution. To calculate GRADS, use the formula: GRADS = Capacity / Display Divisions. Display divisions are specified under the FORMAT submenu.
SPLIT	OFF 2RNG 3RNG 2INTVL 3INTVL	Specifies whether the scale is full-range (OFF), multi-range (2RNG, 3RNG), or multi-interval (2INTVL, 3INTVL). For multi-range and multi-interval scales, see the submenu shown in Figure 3-6 on page 34 and parameter descriptions in Table 3-4 on page 35.
FORMAT	PRIMAR SECNDR TERTIA ROC	For standard scales (SPLIT=OFF), see Level 4 submenu descriptions in Table 3-3 on page 31. For multi-range and multi-interval scales, see Table 3-4 on page 35.
ZTRKBND	0 number	Automatically zeroes the scale when within the range specified, as long as the input is within the ZRANGE and scale is at standstill. Specify the zero tracking band in \pm display divisions. Maximum legal value varies depending on local regulations. NOTE: For scales using linear calibration, do not set the zero tracking band to a value greater than that specified for the first linearization point.
ZRANGE	1.900000 number	Selects the range within which the scale can be zeroed. The 1.900000 default value is \pm 1.9% around the calibrated zero point, for a total range of 3.8%. Indicator must be at standstill to zero the scale. Use the default value for legal-for-trade applications.
MOTBAND	1 number	Sets the level, in display divisions, at which scale motion is detected. If motion is not detected for the SSTIME (default of 1 second) or more, the standstill symbol lights. Some operations, including print, tare, and zero, require the scale to be at standstill. The value entered must be in the range of 0-100. Maximum legal value varies depending on local regulations. If this parameter is set to 0 , the standstill annunciator is set continuously on, and operations including zero, print, and tare will be performed regardless of scale motion. If 0 is selected, ZTRKBND must also be set to 0 .
SSTIME	10 number	Specifies the length of time the scale must be out of motion, in 0.1-second intervals, before the scale is considered to be at standstill. Values greater than 10 (1 second) are not recommended.
OVRLOAD	$\begin{aligned} & \text { FS+2\% } \\ & \text { FS+1D } \\ & \text { FS+9D } \\ & \text { FS } \end{aligned}$	Determines the point at which the display blanks and an out-of-range error message is displayed. Maximum legal value varies depending on local regulations.
WMTTHRH	$\begin{aligned} & 1000 \\ & \text { number } \end{aligned}$	Specifies the minimum number of grads required for a weighment to be added to the recorded number of weighments.

Table 3-2. SCALES Menu Parameters

SCALES Menu

Parameter	Choices	Description
DIGFLT1 DIGFLT2 DIGFLT3	4 8 16 32 64 128 256 1 2	Selects the digital filtering rate used to reduce the effects of mechanical vibration from the immediate area of the scale. Choices indicate the number of A / D conversions per update that are averaged to obtain the displayed reading. A higher number gives a more accurate display by minimizing the effect of a few noisy readings, but slows down the settling rate of the indicator. NOTE: When configuring non-A/D scales, set the DIGFLTx parameters to 1 to disable filtering. See Section 10.9 on page 119 for more information about digital filtering.
DFSENS	$\begin{aligned} & \hline \text { 2OUT } \\ & \text { 4OUT } \\ & \text { 8OUT } \\ & \text { 16OUT } \\ & \text { 32OUT } \\ & \text { 64OUT } \\ & \text { 128OUT } \end{aligned}$	Digital filter cutout sensitivity. Specifies the number of consecutive readings that must fall outside the filter threshold (DFTHRH parameter) before digital filtering is suspended. See Section 10.9 on page 119 for more information about digital filtering.
DFTHRH	NONE 2D 5D 10D 20D 50D 100D 200D 250D	Digital filter cutout threshold. Specifies the filter threshold, in display divisions. When a specified number of consecutive scale readings (DFSENS parameter) fall outside of this threshold, digital filtering is suspended. If NONE is selected, the filter is always enabled. See Section 10.9 on page 119 for more information about digital filtering.
RATTRAP	OFF ON	Enables RATTLETRAP ${ }^{\circledR}$ digital filtering. RATTLETRAP is most effective at filtering repeating vibrations caused by mechanical noise from nearby machines but may increase settling times over standard digital filter selections.
SMPRAT	$\begin{aligned} & \hline 30 \mathrm{HZ} \\ & 60 \mathrm{HZ} \\ & 120 \mathrm{HZ} \\ & 240 \mathrm{HZ} \\ & 480 \mathrm{HZ} \\ & 960 \mathrm{HZ} \\ & 7.5 \mathrm{HZ} \\ & 15 \mathrm{HZ} \end{aligned}$	Sample rate. Selects measurement rate, in samples per second, of the analog-to-digital converter. Lower sample rate values provide greater signal noise immunity. NOTE: The maximum total sample rate for all configured A/D channels-the sum of the sample rates for all scales - is 1200 Hz . For example, up to ten scales can be configured with 120 Hz sample rates, or up to twenty scales with 60 Hz sample rates.
PWRUPMD	GO DELAY	Power up mode. In GO mode, the indicator goes into operation immediately after a brief power up display test. In DELAY mode, the indicator performs a power up display test, then enters a 30-second warm up period. If no motion is detected during the warm up period, the indicator becomes operational when the warm up period ends; if motion is detected, the delay timer is reset and the warm up period repeated.
TAREFN	BOTH NOTARE PBTARE KEYED	Enables or disables push-button and keyed tares. Possible values are: BOTH: Both push-button and keyed tares are enabled NOTARE: No tare allowed (gross mode only) PBTARE: Push-button tares enabled KEYED: Keyed tare enabled
ACCUM	OFF ON	Accumulator. Specifies whether the scale accumulator is enabled. If enabled, accumulation occurs whenever a print operation is performed.
VISIBL	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	Scale visibility. Specifies whether scale data is displayed.

Table 3-2. SCALES Menu Parameters (Continued)

SCALES Menu		
Parameter	Choices	Description
PEAK HOLD	OFF NORMAL BI-DIR AUTO	Peak hold. Used to determine, display, and print the greatest net weight read during a weighing cycle. The weighing cycle ends when a print command is executed (AUTO setting) or when the peak weight is cleared by pressing ZERO or PRINT. Press GROSS/NET to display gross weight data when using the peak hold function. OFF Peak hold function is off. NORMAL Positive peak, manual reset. Greatest net weight is held in memory until the weight is removed from the scale and either the ZERO or PRINT key is pressed. BI-DIR Bi-directional peak, manual reset. Same as NORMAL, but peak value can be either positive or negative, determined by absolute value. AUTO Positive peak, auto print, auto reset. Automatic print occurs when scale load is 0 ± 10 display divisions and at standstill. Following the print command, the peak value is cleared and reset automatically.
CALIBR	WZERO WVAL WSPAN WLIN REZERO	See Level 4 submenu descriptions in Table 3-7 on page 36.

Table 3-2. SCALES Menu Parameters (Continued)

Figure 3-5. SCALES Menu, FORMAT Submenu, SPLIT $=O F F$

SCALES Menu, FORMAT Submenu, SPLIT = OFF		
Parameter	Choices	Description
Level 4, FORMAT submenu		
PRIMAR	DECPNT DSPDIV UNITS	Specifies the decimal position, display divisions, and units used for the primary units. See Level 5 submenu parameter descriptions.
SECNDR	DECPNT DSPDIV UNITS MULT	Specifies the decimal position, display divisions, units, and conversion multiplier used for the secondary units. See Level 5 submenu parameter descriptions.
TERTIA	DECPNT DSPDIV UNITS MULT	Specifies the decimal position, display divisions, units, and conversion multiplier used for the tertiary units. See Level 5 submenu parameter descriptions.
ROC	DECPNT DSPDIV MULT TIME INTERVL REFRESH	Specifies the decimal position, display divisions, conversion multiplier, time units, update interval, and refresh interval used for the rate of change units. See Level 5 submenu parameter descriptions.
Level 5 submenus		
Primary Units (PRIMAR) Parameters		
DECPNT	8888888 8888880 8888800 8.888888 88.88888 888.8888 8888.888 88888.88 888888.8	Decimal point location. Specifies the location of the decimal point or dummy zeroes in the primary unit display. Value should be consistent with local legal requirements.
DSPDIV	$\begin{aligned} & \text { 1D } \\ & \text { 2D } \\ & 5 D \end{aligned}$	Display divisions. Selects the minimum division size for the primary units displayed weight.
UNITS	LB KG G OZ TN T GN TROYOZ TROYLB LT CUSTOM NONE OFF	Specifies primary units for displayed and printed weight. Values are: LB=pound; KG=kilogram; G=gram; OZ=ounce; TN=short ton; T=metric ton; GN=grain; TROYOZ=troy ounce; $T R O Y L B=$ troy pound; $L T=$ long ton.

Table 3-3. SCALES Menu, FORMAT Submenu Parameters, SPLIT = OFF

SCALES Menu, FORMAT Submenu, SPLIT = OFF

Parameter	Choices	Description
Secondary Units (SECNDR) and Tertiary Units (TERTIA) Parameters		
DECPNT	$\begin{array}{\|l\|} \hline 888888.8 \\ 8888888 \\ 8888880 \\ 8888800 \\ 8.888888 \\ 88.88888 \\ 888.8888 \\ 8888.888 \\ 88888.88 \end{array}$	Decimal point location. Determines the location of the decimal point or dummy zeros in the secondary or tertiary units display.
DSPDIV	$\begin{aligned} & \hline 2 \mathrm{D} \\ & 5 \mathrm{D} \\ & 1 \mathrm{D} \end{aligned}$	Display divisions. Selects the value of minimum division size of the displayed weight for secondary or tertiary units display.
UNITS	KG G OZ TN T GN TROYOZ TROYLB LT CUSTOM OFF NONE LB	Specifies secondary or tertiary units for displayed and printed weight. Values are: LB=pound; KG=kilogram; G=gram; OZ=ounce; TN=short ton; T=metric ton; GN=grain; TROYOZ=troy ounce; TROYLB=troy pound; LT=long ton.
MULT	$\begin{aligned} & \hline 0.453592 \\ & 0.000001- \\ & 9999999 \end{aligned}$	Multiplier. Specifies the conversion factor by which the primary units are multiplied by to obtain the secondary or tertiary units. The default is 0.453592 , which is the conversion factor for changing pounds to kilograms. See Section 10.10 on page 120 for a list of multipliers. To shift between primary, secondary, and tertiary units, press the UNITS key.

Rate of Change (ROC) Units Parameters
For applications using the ROC function, the primary scale should be configured with a finer resolution than the rate of change (ROC) units to prevent a stepwise appearance in the ROC display. The ROC display step size (weight increment between displayed values) can be roughly calculated as follows:
(updates_per_ROC_UNIT) * (PRIMARY_resolution / ROC_resolution)
For example, with INTERVL=30; REFRESH =0.1; UNITS=MIN; PRIMARY resolution at 0.1 LB and ROC resolution at 1.0 (LB/MIN):

- INTERVL * REFRESH $=30$ * $0.1=3.0$ seconds per update (ROC data is flushed every 3.0 seconds)
- With UNITS = MIN, there are 20 ROC data updates per ROC time unit: 60 seconds / 3.0 seconds per update
- \quad The resolution ratio of PRIMARY to ROC units is 0.1 (0.1 / 1.0)
- \quad This configuration provides a step size in the ROC display of 2 LB (2 LB increments between displayed values):

20 * $0.1=2$
Note that setting both PRIMARY and ROC display resolutions to 1 LB would have resulted in a step size of 20 LB.
Table 3-3. SCALES Menu, FORMAT Submenu Parameters, SPLIT = OFF (Continued)

SCALES Menu, FORMAT Submenu, SPLIT = OFF		
Parameter	Choices	Description
DECPNT	8888888 8888880 8888800 8.888888 88.88888 888.8888 8888.888 88888.88 888888.8	Decimal point location. Determines the location of the decimal point or dummy zeros in the display.
DSPDIV	$\begin{array}{\|l\|} \hline 1 D \\ 2 D \\ 5 D \end{array}$	Display divisions. Selects the minimum division size for the ROC units displayed weight.
MULT	$\begin{array}{\|l} 1.0 \\ 0.000001- \\ 9999999 \end{array}$	Multiplier. Specifies the conversion factor by which the primary units are multiplied by to obtain the displayed rate of change units. See Section 10.10 on page 120 for information about conversion factors.
UNITS	SEC MIN HOUR	Rate-of-change units.
INTERVL	$\begin{array}{\|l\|} \hline 10 \\ 1-100 \end{array}$	Update interval. Specifies the number of refreshes over which the rate-of-change is calculated. For example, with REFRESH set to 0.1 second and INTERVL at 60, each weight value takes 6 seconds (0.1 * 60) to be flushed from the ROC data.
REFRESH	$\begin{aligned} & \hline 0.1 \\ & 0.1-60 \end{aligned}$	Refresh interval. Specifies the number of seconds between rate-of-change samples.

Table 3-3. SCALES Menu, FORMAT Submenu Parameters, SPLIT = OFF (Continued)

Figure 3-6. SCALES Menu, FORMAT Submenu, SPLIT \neq OFF

SCALES Menu, FORMAT Submenu, SPLIT \neq OFF

Parameter	Choices	Description
Level 4, FORMAT submenu		
DECPT1	8888888 8888880 8888800 8.888888 88.88888 888.8888 8888.888 88888.88 888888.8	Decimal point location for first range or interval. Specifies the location of the decimal point or dummy zeroes in the primary unit display. Value should be consistent with local legal requirements.
DDIV1	$\begin{aligned} & \hline 1 D \\ & 2 D \\ & 5 D \end{aligned}$	Display divisions for first range or interval. Selects the minimum division size for the primary units displayed weight.
MAX1	50.00000 weight	Maximum weight for first range or interval.
DECPT2	888888.8 8888888 8888880 8888800 8.888888 88.88888 888.8888 8888.888 88888.88	Decimal point location for second range or interval. Specifies the location of the decimal point or dummy zeroes in the primary unit display. Value should be consistent with local legal requirements.
DDIV2	$\begin{aligned} & \hline 2 \mathrm{D} \\ & 5 \mathrm{D} \\ & 1 \mathrm{D} \end{aligned}$	Display divisions for second range or interval. Selects the minimum division size for the primary units displayed weight.
MAX2	50.00000 weight	Maximum weight for second range or interval.
DECPT3	$\begin{aligned} & \hline 888888.8 \\ & 8888888 \\ & 8888880 \\ & 8888800 \\ & 8.888888 \\ & 88.88888 \\ & 888.8888 \\ & 8888.888 \\ & 88888.88 \end{aligned}$	Decimal point location for third range or interval (SPLIT = 3RNG or 3INTVL only). Specifies the location of the decimal point or dummy zeroes in the primary unit display. Value should be consistent with local legal requirements.
DDIV3	$\begin{aligned} & \text { 5D } \\ & 1 D \\ & \text { 2D } \end{aligned}$	Display divisions for third range or interval (SPLIT = 3RNG or 3INTVL only). Selects the minimum division size for the primary units displayed weight.
MAX3	50.00000 weight	Maximum weight for third range or interval (SPLIT = 3RNG or 3INTVL only).

Table 3-4. SCALES Menu, FORMAT Submenu Parameters, SPLIT \neq OFF

SCALES Menu, FORMAT Submenu, SPLIT \neq OFF

Parameter	Choices	Description
UNITS	LB	Specifies primary units for displayed and printed weight. Values are: LB=pound;
	KG	KG=kilogram; G=gram; OZ=ounce; TN=short ton; T=metric ton; GN=grain; TROYOZ=troy
	G	ounce; TROYLB=troy pound; LT=long ton.
	OZ	
	TN	
	T	
	GN	
	TROYOZ	
	TROYLB	
	LT	
	CUSTOM	
	NONE	
	OFF	

Table 3-4. SCALES Menu, FORMAT Submenu Parameters, SPLIT \neq OFF (Continued)

Figure 3-7. SCALES Menu, CALIBR Submenu
See the $i Q U B E^{2}$ Installation Manual, PN 106113, for information about configuring $i_{Q U B E}{ }^{2}$ scales.

| SCALES Menu, CALIBR Submenu | | |
| :--- | :--- | :--- | :--- |
| Parameter | Choices | |
| Level 4, CALIBR submenu | | |
| WZERO | - | Press ENTER to display and edit the zero calibration A/D count or millivolts value. |
| WVAL | - | Press ENTER to display and edit the test weight value. |
| WSPAN | - | Press ENTER to display and edit the span calibration A/D count or millivolts value. |
| WLIN | POINT 1
 POINT 5 | Press ENTER to display and edit test weight and calibration values for up to five linearization points.
 Perform linear calibration only after WZERO and WSPAN have been set. |
| REZERO | - | Press ENTER to remove an offset value from the zero and span calibrations.
 NOTE: Use this parameter only after WZERO and WSPAN have been set. See Section 4.2 on
 page 55 for more information about using this parameter. |

Table 3-5. SCALES Menu, CALIBR Submenu Parameters

3.2.2 SERIAL Menu

See Section 10.6 on page 112 for information about $920 i$ serial data formats.

Figure 3-8. SERIAL Menu, Ports 1 and 2

Figure 3-9. SERIAL Menu, Port 3

Figure 3-10. SERIAL Menu, Port 4 and Expansion Ports

SERIAL Menu		
Parameter	Choices	Description
Level 2 submenus		
$\begin{array}{\|l} \hline \text { PORT } 1 \\ \text { PORT } 2 \\ \text { PORT } 3 \\ \text { PORT } 4 \\ \ldots \\ \text { PORT } x \end{array}$	CMD PROGIN KEYBD KDBDPRG SCALE IND SC DISPLAY IQUBE	Specifies the type of data received by the port: CMD: Remote command input PROGIN: Programmable input KEYBD: Remote keyboard input KBDPRG: Passes keyboard scan directly to user program for use by PortxCharRecieved handler SCALE: Legal-for-trade serial scale input IND SC: Industrial (non-legal-for-trade) scale input DISPLAY: Display data input for remote units in local/remote configurations IQUBE2: $i Q U B E^{2}$ serial scale input KEYBD and KBDPRG are available only on Port 2; SCALE, IND SC, and IQUBE2 are available only on Ports 3 and 4 and higher (expansion ports). NOTE: The keyboard interface is not hot-pluggable. Power-off the $920 i$ before plugging the keyboard cable into the Port 2 connector.
Level 3 Submenus		Port 1-Port 32
BAUD	9600 19200 28800 38400 57600 115200 300 600 1200 2400 4800	Baud rate. Selects the transmission speed for the port. NOTE: The maximum baud rate for ports on serial expansion cards (port number greater than 4) is 19200.
BITS	8NONE 7EVEN 7ODD 8ODD 8EVEN	Selects number of data bits and parity of data transmitted or received by the port.
STOP BITS	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	Selects number of stop bits transmitted or received by the port.
ECHO	ON OFF	Specifies whether characters received by the port are echoed back to the sending unit.
RESPONSE	ON OFF	Specifies whether the port transmits replies to serial commands.
TERMIN	CR/LF CR	Termination character. Selects termination character for data sent from the port.
EOLDLY	$\begin{aligned} & 0 \\ & 0-255 \end{aligned}$	End-of-line delay. Sets the delay period, in 0.1 -second intervals, from when a formatted line is terminated to the beginning of the next formatted serial output. Value specified must be in the range $0-255$, in tenths of a second ($10=1$ second).
HANDSHK	OFF XONOFF HRDWAR	Specifies whether XON/XOFF flow control characters or hardware handshaking is used. Hardware handshaking is available only on Port 2.

Table 3-6. Serial Menu Parameters

SERIAL Menu		
Parameter	Choices	Description
PORTTYPE	$\begin{aligned} & 232 \\ & 485 \\ & 422 \end{aligned}$	Specifies whether Port 4 is used for RS-232, RS-485, or RS-422 communications. If 485 is selected, additional prompts are shown to specify half- or full-duplex operation and RS-485 address. NOTE: RS-485 communications is compatible with $i Q U B E^{2}$. It can be specified for Port 4, and for odd numbered expansion ports 5 and higher.
STREAM	OFF LFT INDUST 4KEYS KEYPAD DISPLAY	Specifies what data, if any, is streamed from the port. LFT streams data at the display rate specified by the DSPRATE parameter on the FEATURE menu (see page 43). INDUST streams data at the A/D update rate specified by the SMPRATE parameter on the SCALES menu (see page 28). 4KEYS and KEYPAD stream keypad events to a receiving indicator. KEYPAD transmits all keypad events; 4KEYS transmits keypresses of the ZERO, GROSS/NET, TARE, and UNITS keys only. DISPLAY streams the complete display image to the receiving indicator in local/remote indicator configurations. See Section 10.5 on page 111 for more information. NOTE: Streaming is not supported for RS-485 connections.
SOURCE	source_scale	If STREAM is set to a value other than OFF, SOURCE specifies the source scale for data streamed from the port.
SFMT	format	Specifies the stream format used for the streamed data (SCALE or IND SC scale types). The default format is the Consolidated Controls format (see Section 10.8 on page 118). See Section 10.6 on page 112 for information about custom stream formatting.
TOKENS	PRIMAR SECNDR TERTIA GROSS INVALID MOTION ZERO NET OK RANGE TARE	If STREAM is set to LFT or INDUST, the TOKENS parameter can be used to replace tokens used in the data stream from the indicator front panel. See Section 10.6 on page 112 for more information about custom stream formatting.
Level 4 Submenus		RS-485 Port Information
DUPLEX	$\begin{aligned} & \hline \text { HALF } \\ & \text { FULL } \end{aligned}$	Specifies whether the RS-485 communications is half- or full-duplex.
ADDRESS	$\begin{aligned} & 0 \\ & 0-255 \end{aligned}$	Specifies the decimal indicator address for RS-485 connections. RS-232 communications is disabled if an address other than zero is specified for this parameter. RS-485 addresses must be in the range 01-255.

Table 3-6. Serial Menu Parameters (Continued)

3.2.3 FEATURE Menu

*If there is a pot, make sure to center its position and use the CONTRAST parameter for fine-tuning.
Figure 3-11. FEATURE Menu

FEATURE Menu		
Parameter	Choices	Description
Level 2 submenus		
DATE	DATEFMT DATESEP	Allows selection of date format and date separator character. See Level 3 submenu parameter descriptions. Use the TIME/DATE softkey or the SD serial command to set the date. See Section 9.0 on page 89 for information about using the serial commands.
TIME	TIMEFMT TIMESEP	Allows selection of time format and separator character. See Level 3 submenu parameter descriptions. Use the TIME/DATE softkey or the ST serial command to set the time. See Section 9.0 on page 89 for information about using the serial commands.
DECFMT	DOT COMMA	Specifies whether decimal numbers are displayed using a period (DOT) or comma as the decimal symbol.
DSPRATE	$\begin{aligned} & \hline 1 \\ & 1-80 \end{aligned}$	Display update rate. Specifies the display update rate, in the number of 100-millisecond intervals between updates. The default value, 1, provides about 10 updates per second. The maximum value updates the display every 8 seconds.
CONSNUM	$\begin{aligned} & 0 \\ & 0-9999999 \end{aligned}$	Consecutive numbering. Allows sequential numbering for print operations. The consecutive number value is incremented following each print operation that includes $\langle\mathrm{CN}\rangle$ in the ticket format. When the consecutive number is reset, it is reset to the value specified on the CONSTUP parameter.
CONSTUP	$\begin{aligned} & \hline 0 \\ & 0-9999999 \end{aligned}$	Specifies the consecutive number start-up value used when the consecutive number is reset by sending the KCLRCN serial command or a CLRCN digital input. Value specified must be in the range 0-9 999999.
UID	$\begin{aligned} & 1 \\ & \text { unit-ID } \end{aligned}$	Specifies the unit identification number. Value specified can be any alphanumeric value, up to eight characters.
TRUCK	OFF MODE1 MODE2 MODE3 MODE4 MODE5 MODE6	Specifies the truck mode used. If selected, the indicator switches from normal mode to the selected truck mode. See Section 7.0 on page 68 for more information about using the truck modes. MODE1: Auto clear ID, keyed tares, value swapping MODE2: Auto clear ID, no keyed tares, value swapping MODE3: Stored ID, keyed tares, value swapping MODE4: Stored ID, no keyed tares, value swapping MODE5: Stored ID, keyed tares, no value swapping MODE6: Stored ID, no keyed tares, no value swapping
ALIBI	OFF ON	Specifies whether data storage is used by the alibi feature to allow reprinting of any transaction. Use the SOFTKEYS parameter to enable a softkey for recalling alibi print transactions. NOTE: Alibi tracking must be turned on when in OIML mode in order to meet the legal-for-trade requirement.
CFGPWD	$\begin{aligned} & 0 \\ & 0-9999999 \\ & \text { reset=999999 } \end{aligned}$	Configuration password. Specify a non-zero value to restrict access to all configuration menus. The value 999999 is used to reset the indicator NOTE: If a configuration password is specified, be sure to record the password and keep it in a safe place. If the configuration password is lost or unavailable, the indicator must be cleared (reset configuration and calibration parameters) to continue use. To clear the indicator, press the setup switch, then enter 999999 (six nines) at the configuration password prompt. The unit performs a RESETCONFIGURATION then returns to the setup mode configuration display.

Table 3-7. FEATURE Menu Parameters

FEATURE Menu		
Parameter	Choices	Description
SPPWD	O O-9999999	Setpoint password. Specify a non-zero value to restrict access to the setpoint menu. The SPPWD is also shared by, and can be used to protect, the truck register. If a non-zero setpoint password is specified, the password must be entered before deleting any entries from the truck register.
CONTRAST	0-127	Adjusts the display contrast level. For front panel adjustment, the Contrast softkey can be added.
SOFTKEYS	<blank> Time/Date Display Tare Display Accum Display ROC Setpoint Batch Start Batch Stop Batch Pause Batch Reset Weigh In Weigh Out Truck Regs Unit ID Select Scale Alibi Diagnostics Contrast Test Stop Go Off Screen F1-F10	Use the Add and Remove softkeys to select softkeys to be displayed in weighing mode.
KYBDLK	OFF ON	OFF ON
ZERONLY	PROMPT1- PRROMPT60	Specify prompts for use in setpoint names. Prompts are referenced by the NAME parameter under the SETPTS submenus; prompts can be shown on the display during setpoint execution.

Table 3-7. FEATURE Menu Parameters (Continued)

FEATURE Menu		
Parameter	Choices	Description
REGULAT	NTEP CANADA INDUST NONE OIML	Regulatory mode. Specifies the regulatory agency having jurisdiction over the scale site. - OIML, NTEP, and CANADA modes allow a tare to be acquired at any weight greater than zero. NONE allows tares to be acquired at any weight value. - OIML, NTEP, and CANADA modes allow a tare to be cleared only if the gross weight is at no load. NONE allows tares to be cleared at any weight value. - NTEP and OIML modes allow a new tare to be acquired even if a tare is already present. In CANADA mode, the previous tare must be cleared before a new tare can be acquired. - NONE, NTEP and CANADA modes allow the scale to be zeroed in either gross or net mode as long as the current weight is within the specified ZRANGE. In OIML mode, the scale must be in gross mode before it can be zeroed; pressing the ZERO key in net mode clears the tare. - INDUST provides a set of subparameters to allow customization of tare, clear, and print functions in non-legal-for-trade scale installations. See Level 4 parameter descriptions in Table 3-9 on page 47. The value specified for this parameter affects the function of the front panel TARE and ZERO keys. See Section 10.2 on page 109 for a complete description of TARE and ZERO key functions for each of the regulatory modes.
REGWORD	GROSS BRUTTO	Sets the term displayed when weighing in gross mode. Selecting BRUTTO replaces the Gross annunciator with Brutto.
CONTACT	-	Allows specification of contact information for use in $i Q U B E^{2}$ alert messages. See Level 3 submenu descriptions in Table 3-8 on page 46.
LOCALE	OFF ON	Locale. Set this parameter ON to enable the LATUDE and ELEVAT parameters. Specifying latitude and elevation of the scale site provides compensation for gravitational effects. Attached scales must be recalibrated after changing this parameter from OFF to ON. NOTE: Gravitational compensation settings do not affect $i Q U B E^{2}$ scales.
LATUDE	$\begin{aligned} & 45 \\ & 0-90 \end{aligned}$	Latitude. Specify the latitude of the scale site in degrees. This parameter is shown only if LOCALE=ON.
ELEVAT	$\begin{aligned} & 345 \\ & \pm 0-9999 \end{aligned}$	Elevation. Specify the elevation of the scale site in meters. Valid values are -9999 through 9999. This parameter is shown only if LOCALE=ON.
IMAGE	NEGATIVE POSITIVE	Specifies whether the indicator display is presented as blue-on-white or white-on-blue. The default value, NEGATIVE, shows the standard blue-on-white image when using the stock LCD display; the optional outdoor display shows white-on-blue. When using the outdoor display, set this value to POSITIVE to show the standard, blue-on-white display image, then use the LCD contrast potentiometer to adjust for optimal viewing.
LANGUAGE	ENGLISH language	Specifies the language and character set used for $920 i$ prompts and printing.
Level 3 submenus		
DATEFMT	MMDDYYYY DDMMYYYY YYYYMMDD YYYYDDMM	Specifies the format used to display or print the date.
DATESEP	SLASH DASH SEMI	Specifies the date separator character.
TIMEFMT	$\begin{aligned} & \text { 12HOUR } \\ & 24 \mathrm{HOUR} \end{aligned}$	Specifies the format used to display or print the time.
TIMESEP	COLON COMMA	Specifies the time separator character.

Table 3-7. FEATURE Menu Parameters (Continued)

FEATURE Menu, CONTACT Submenu

The CONTACT submenu allows entry of contact information for a contact company or scale dealer. Contact information can be displayed by pressing the Contacts softkey on the Version menu in setup mode or the Diagnostics softkey when in weigh mode. Contact information may be used in print formats (see Section 6.0 on page 62).

Figure 3-12. CONTACT Submenu

FEATURE Menu, CONTACT Submenu		
Parameter	Choices	Description
Level 3, CONTACT submenu		
CMPNY	company_name	Enter the name of the contact company or dealer.
ADDR1-ADDR3	address	Enter up to three lines of address information for the contact company.
NAME1-NAME3	contact_name	Enter names of up to three contact persons.
PHONE1-PHONE3	phone_number	Enter phone numbers for each of the contact persons specified for the NAMEX parameter.
EMAIL	email_address	Enter the e-mail address of the contact company or dealer. If the $i Q U B E^{2}$ alert support is used to send automated alert e-mail messages, enter the e-mail address to which the alert messages will be sent. See the $i Q U B E^{2}$ Installation Manual, PN 106113 for more information aboutiQUBE ${ }^{2}$ alerts.
NEXTCAL*	date	Enter the next scheduled calibration date using the month/day/year format on the DATEFMT parameter. Separator characters are not required.

Table 3-8. CONTACT Submenu Parameters
*|f value is not changed, date will reflect 6 months out from last calibration.

FEATURE Menu, REGULAT/INDUST Submenu

The INDUST setting of the REGULAT parameter allows customization of several tare, clear, and print functions for use in non-legal-for-trade scale installations. See Section 10.2 on page 109 for more information about regulatory mode functions.

Figure 3-13. REGULAT / INDUST Submenu

FEATURE Menu, REGULAT / INDUST Submenu		
Parameter	Choices	\quad Description
Level 4, REGULAT / INDUST submenu		
SNPSHOT	DISPLAY, SCALE	Display or Scale weight source
HTARE	NO, YES	Allow tare in display hold
ZTARE	NO, YES	Remove tare on ZERO
KTARE	YES, NO	Always allow keyed tare
MTARE	REPLACE REMOVE NOTHING	Multiple tare action
NTARE	NO, YES	Allow negative or zero tare
CTARE	YES, NO	Allow CLEAR key to clear tare/accumulator
CHILD ZT	NO, YES	Clear child scales individually
NEGTOTAL	NO, YES	Allow total scale to display negative value
PRTMOT	NO, YES	Allow print while in motion
PRTPT	NO, YES	Add PT to keyed tare print
PRTHLD	NO, YES	Print during display hold

Table 3-9. REGULAT / INDUST Submenu Parameters

FEATURE Menu, REGULAT / INDUST Submenu

Parameter	Choices	Description
HLDWGH	NO, YES	Allow truck weighment during display hold
MOTWGH	NO, YES	Allow truck weighment in motion
OVRBASE	CALIB SCALE	Sets an industrial scale to function like an OIML or NTEP scale (see Table 10-5 on page 109)
AUDAGNCY	NTEP CANADA INDUST NONE OIML	trail display agency format

Table 3-9. REGULAT / INDUST Submenu Parameters (Continued)

3.2.4 PFORMT Menu

See Section 6.0 on page 62 for information about custom print formatting.

Figure 3-14. PFORMT Menu

3.2.5 SETPTS Menu

See Section 8.0 on page 70 for more information about configuring and using setpoints. Submenus for the various setpoint kinds (shown as Go to X in Figure 3-15) are described in Figures 8-2 through 8-9, beginning on page 74 .

Figure 3-15. SETPTS Menu

3.2.6 DIG I/O Menu

The DIG I/O menu shown in Figure 3-16 is used to assign functions to digital inputs and outputs. SLOT 0 represents the six I/O bits available on the CPU board (connector J2); additional slots, each with $24 \mathrm{I} / \mathrm{O}$ bits, are shown only if one or more digital I/O expansion cards are installed.

Figure 3-16. DIG I/O Мепи

DIG I/O Menu		
Parameter	Choices	Description
Level 2 submenus		
SLOTx	BIT y	Lists available digital I/O slots.
Level 3 submenus		
BIT y	OFF INPUT OUTPUT PROGIN ZERO NT/GRS TARE UNITS PRINT ACCUM SETPNT TIMDATE ESC CLEAR DSPTAR IDKEY KEYO-KEY9 KEYDP ENTER NAVUP NAVDN NAVLFT NAVRGT KBDLOC HOLD BATRUN BATSTRT BATPAUS BATRESET BATSTOP CLRCN GROSS NET PRIM SEC TER CLRTAR CLRACC TRIGGER	Specifies the function of the digital I/O bit. - OFF indicates that the bit is not configured. - INPUT assigns the bit as a digital input used for DIGIN setpoints. - OUTPUT assigns the bit as a digital output for setpoint or program use. - PROGIN assigns the bit as a digital input used to generate a program event. - ZERO, NT/GRS (net/gross mode toggle), TARE, UNITS, and PRINT provide the same functions as the five major front panel keys. - ACCUM adds the current scale weight to the accumulator, if the scale accumulator is enabled. - SETPNT, and TIMDATE provide the same functions as the Setpoint and Time/Date softkeys. - ESC provides a function equivalent to the Cancel softkey. - CLEAR simulates pressing the front panel CLR key. - DSPTAR displays the current tare; equivalent to pressing the Display Tare softkey. - IDKEY displays a prompt to enter a new unit ID; equivalent to pressing the Unit ID softkey. - KEYO-KEY9 and KEYDP (decimal point) simulate pressing keys on the numeric keypad. - ENTER simulates pressing the front panel ENTER key. - NAVUP, NAVDN, NAVLFT, and NAVRGT simulate pressing the navigation keys. - KBDLOC locks the keyboard (indicator front panel) when held low. - HOLD holds the current display. Releasing this input clears the running average filter. - BATRUN allows a batch routine to be started and run. With BATRUN active (low), the BATSTRT input starts the batch; if BATRUN is inactive (high), BATSTRT resets the batch. - BATSTRT starts or resets a batch routine, depending on the state of the BATRUN input. - BATPAUS pauses a batch routine when held low. - BATRESET stops the batch sequence and resets to the first batch step. - BATSTOP stops the batch routine. - CLRCN resets the consecutive number to the value specified on the CONSTUP parameter (FEATURE menu). - GROSS, NET, PRIM, SEC, and TER select gross or net weight display, and primary, secondary, or tertiary units display modes. - CLRTAR clears the current tare for the active scale. - CLRACC clears the active accumulator. - TRIGGER is used for custom applications only.
Level 4 submenus		TRIGGER subparameters
OUTSLOT	NONE PORT 3	Specifies the card slot receiving the trigger output.
PARAM	0 number	Specifies the value passed as a parameter to the option card in the specified slot.

Table 3-10. DIG I/O Menu Parameters

3.2.7 ALGOUT Menu

The ALGOUT menu is shown only if the analog output option is installed. If the analog output option is installed, configure all other indicator functions and calibrate the indicator itself before configuring the analog output. See the Analog Output Card Installation Instructions, PN 69089, for more information.

Figure 3-17. Analog Output Menu

ALGOUT Menu		
Parameter	Choices	Description
Level 2 submenus		
SOURCE1	PROG SCALEn	Specifies the scale tracked by the analog output. PROG indicates that the analog output is under program control.
MODE1	GROSS NET	Specifies the weight data, gross or net, tracked by the analog output.
OFFSET	$\begin{array}{\|l\|} \hline 0 \% \\ 20 \% \end{array}$	Zero offset. Select 0% for $0-10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$ output; select 20% for $4-20 \mathrm{~mA}$ output. This parameter must be set before calibrating the analog output.
ERRACT	$\begin{aligned} & \text { FULLSC } \\ & \text { HOLD } \\ & \text { ZEROSC } \end{aligned}$	Error action. Specifies how the analog output responds to system error conditions. Possible values are: FULLSC: Set to full value (10 V or 20 mA) HOLD: Hold current value ZEROSC: Set to zero value (0 V or 4 mA)
MIN	$\begin{array}{\|l\|} \hline 000000 \\ 0-9999999 \end{array}$	Specifies the minimum weight value tracked by the analog output. Specify a value in the range 0-9999999.
MINNEG	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$	Specify ON if the minimum weight (MIN parameter) is a negative value.
MAX	$\begin{array}{\|l\|} \hline 10000 \\ 0-9999999 \\ \hline \end{array}$	Specifies the maximum weight value tracked by the analog output. Specify a value in the range 0-9999999
MAXNEG	$\begin{aligned} & \hline \text { OFF } \\ & \text { ON } \end{aligned}$	Specify ON if the maximum weight (MAX parameter) is a negative value.

Table 3-11. Analog Output Menu Parameters

ALGOUT Menu		
Parameter	Choices	Description
TWZERO	40 $0-65535$	Tweak zero. Enter tweak value to adjust the analog output zero calibration. Use a multimeter to monitor the analog output value.
TWSPAN	59650 $0-65535$	Tweak span. Enter tweak value to adjust the analog output span calibration. Use a multimeter to monitor the analog output value.

Table 3-11. Analog Output Menu Parameters

3.2.8 FLDBUS Menu

The FLDBUS menu is shown only if a DeviceNet, Profibus, EtherNet/IP, or ControlNet option card is installed. The SWAP parameter on the FLDBUS menu enables byte swapping by the iRite BusCommand handler rather than requiring a SWP (SWAPBYTE) instruction in the PLC. Byte swapping is enabled by default for DeviceNet cards; for all other fieldbus cards, byte swapping is disabled by default.

- BYTE swaps bytes within the word before transmission to the scanner
- WORD swaps words 1 and 2, 3 and 4, within a 4-word packet
- BOTH performs both operations, swapping bytes within a word and swapping words within the packet
- NONE disables swapping

The DATASIZE parameter sets the size of the BusCommand handler data transfers. The default value (8 bytes) matches the default data size specified in the EDS and GSD files, and used by the standard discrete transfer commands. DATASIZE can be set to any value from 2-128 bytes (1-64 words), but the value specified must match the data size set for the PLC Scanner I/O data size.

Figure 3-18. FLDBUS Menu

| FLDBUS Menu | | |
| :--- | :--- | :--- | :--- |
| Parameter | Choices | |
| Level 2 submenus | NONE
 BYTE
 WORD
 BOTH | Specifies byte-swapping used for the fieldbus card. For DeviceNet cards, this parameter defaults to
 BYTE; for all other cards the default value is NONE.
 NOTE: In Version 3.08 firmware, this parameter supports values of YES (byte swapping) or NO.
 Version 3.09 replaces YES with BYTE, NO with NONE, and adds the values WORD and BOTH. |
| SWAP | 8
 $2-128$ | Specifies the data size, in bytes, that the BusCommand handler transfers. If this parameter is set to
 a value other than the default (8 bytes), ensure that it matches the Scanner I/O data size specified
 for the PLC. |
| DATASIZE | | |

Table 3-12. Fieldbus Menu Parameters

3.2.9 VERS Menu

The VERS menu can be used to check the installed software version or, by using the Reset Config softkey, to restore all configuration parameters to their factory default values. There are no parameters associated with the Version menu: when selected, the indicator displays the installed software version number.

Figure 3-19. Version Menu
The Contacts softkey on the Version menu allows display of contact information (see "FEATURE Menu, CONTACT Submenu" on page 46). If an $i Q U B E^{2}$ scale is configured, a Diagnostics softkey also provides access to $i_{Q U B E}{ }^{2}$ diagnostic information.

4.0 Calibration

The $920 i$ can be calibrated using the front panel, serial commands, or iRev 4. Each method consists of the following steps:

- Zero calibration
- Entering the test weight value
- Span calibration
- Optional five-point linearization
- Optional rezero calibration for test weights using hooks or chains

The following sections describe the calibration procedure for each of the calibration methods. See the $i Q U B E^{2}$ Installation Manual, PN 106113, for information about configuring i^{2} QBE 2-attached scales.

Figure 4-1. Calibration (CALIBR) Submenu

4.1 Gravity Compensation

Gravity compensation for latitude and elevation is available for the 920i. To calibrate with gravity compensation, the LOCALE parameter under the FEATURE menu must be set ON, and the LATUDE (latitude) and ELEVAT (elevation, in meters) parameters set before calibrating the indicator (see Figure 3-11 on page 42).
If the indicator is later installed at a different location, gravity compensation can be applied to a pre-calibrated indicator by adjusting the LATUDE and ELEVAT parameters.

4.2 Front Panel Calibration

The CALIBR submenu (under the SCALES menu, see Figure 4-2) is used to calibrate the 920i. The zero, span, and linear calibration point displays provide a set of softkeys used specifically for calibration procedures:

Temp Zero Temporarily zeroes the displayed weight of a non-empty scale. After span calibration, the difference between the temp zero and the previously calibrated zero value is used as an offset.

Millivolts (or Counts)

Toggles between display of captured A/ D counts and captured millivolts values; allows entry of calibration values in mV or counts

Figure 4-2. WZERO Calibration Display
To calibrate the indicator using the front panel, do the following:

1. Place the indicator in setup mode (display reads Scale Configuration) and remove all weight from the scale platform. If your test weights require hooks or chains, place the hooks or chains on the scale for zero calibration.
2. With the SCALES menu highlighted, press the down key, then select the scale to be calibrated. Press down again (GRADS parameter highlighted), then press left to highlight the CALIBR submenu (see Figure 4-1). Press down to go to zero calibration (WZERO). See Figure 4-2 on page 56.
3. Ensure scale is empty, then press down again to show the current WZERO value, then press the Calibrate softkey to calibrate zero. When complete, the new A/D count for the zero calibration is displayed. Press enter to save the zero calibration value and go to the next prompt (WVAL).
4. With $W V A L$ displayed, press down to show the stored calibration weight value. Use the numeric keypad to enter the actual value of the calibration test weights, then press enter to save the value and go to span calibration (WSPAN).
5. Place test weights on scale. Press down again to show the current WSPAN value, then press the Calibrate softkey to calibrate span. When complete, the new A/D count for the span calibration is displayed. Press enter again to
save the span calibration value and go to the next prompt (WLIN).
6. Five-point linearization (using the WLIN parameter) provides increased scale accuracy by calibrating the indicator at up to five additional points between the zero and span calibrations.
Linearization is optional: if you choose not to perform linearization, skip the WLIN parameter; if linearization values have previously been entered, these values are reset to zero during calibration. WZERO and WSPAN must be calibrated before adding linearization points; WLIN values must be less than the WSPAN value and must not duplicate WZERO or WSPAN.
To perform linearization, follow the procedure below:
With WLIN displayed, Press down to go to the first linearization point (POINT 1). Press down again to show the weight value prompt (WGT 1), then down once more to show the weight value. Place test weights on the scale, then use the numeric keypad to enter the actual test weight value. Press enter to save the value and move to the calibration (CAL 1) prompt. Press down to show the current calibration value, then press the Calibrate softkey to calibrate the linearization point. When complete, the A/D count for the linear calibration is displayed. Press enter again to save the calibration value and go to the next prompt (POINT 2).
Repeat for up to five linearization points. To exit the linearization parameters, press the up key to return to WLIN.
7. The optional rezero function is used to remove a calibration offset when hooks or chains are used to hang the test weights.
NOTE: The rezero function cannot be used with five-point linear calibration.

- If no other apparatus was used to hang the test weights during calibration, remove the test weights and press up to return to the CALIBR submenu.
- If hooks or chains were used during calibration, remove these and the test weights from the scale. With all weight removed, go to the REZERO parameter, then press down to show the current zero value. Press the Calibrate softkey to adjust the zero and span calibration values. Press enter or up to return to the CALIBR submenu.

8. Press up to return to the SCALES menu, or press the Save and Exit softkey to exit setup mode.

4.3 Serial Command Calibration

To calibrate the indicator using serial commands, the indicator serial port must be connected to a terminal or personal computer. See Section 2.3.3 on page 10 for serial port pin assignments; see Section 9.0 on page 89 for more information about using serial commands.
Once the indicator is connected to the sending device, do the following:

1. Place the indicator in setup mode (display reads CONFIG) and remove all weight from the scale platform. If your test weights require hooks or chains, place the hooks or chains on the scale for zero calibration.
2. Send the SC.WZERO\#n serial command (where n is the number of the scale) to calibrate zero.
3. Place test weights on the scale and use the SC.WVAL command to enter the test weight value in the following format:
SC.WVAL\#n=vvVvV<CR>
4. Send the SC.WSPAN\#n serial command to calibrate span.
5. Up to five linearization points can be calibrated between the zero and span calibration values. Use the following commands to set and calibrate a single linearization point:
SC.WLIN\#n.V1=vVVVv<CR>
SC.WLIN\#n.C1<CR>
The SC.WLIN\#n.V1 command sets the test weight value ($v \vee v v v$) for linearization point 1. The SC.WLIN\#n.C1 command calibrates the point. Repeat using the SC.WLIN\#n.Vx and SC.WLIN\#n.Cx commands as required for additional linearization points.
6. To remove an offset value, clear all weight from the scale, including hooks or chains used to hang test weights, then send the SC.REZERO\#n serial command.
7. Send the KSAVEEXIT serial command to save the calibration changes and exit setup mode.

4.4 iRev Calibration

The iRev 4 Calibration Wizard provides step-by-step scale calibration. With the $920 i$ connected to the PC, select the Calibration Wizard from the Tools menu on the iRev 4 Scales display, then follow the steps listed below to calibrate the scale. See Section 5.0 on page 59 for a general overview of the iRev 4 utility.

1. On the first Calibration Wizard display (see Figure 4-3), select whether you are performing a standard (zero and span)
calibration or a multi-point linear calibration. Click the Next button to continue.

Figure 4-3. iRev 4 Calibration Wizard
2. Next (see Figure 4-4), select the scale you wish to calibrate.

Figure 4-4. iRev 4 Scale Selection Display
3. Enter the test weight used to calibrate the scale (see Figure 4-5). If chains or hooks are used to hold the weights, check the box below the test weight value entry. This adds a rezero step to the calibration sequence.

Figure 4-5. iRev 4 Test Weight Value Display
4. Remove all weights from the scale. If chains or hooks are used, place them on the scale. Press the Calibrate Zero button to perform the zero calibration (see Figure 4-6). A message box appears when the process is complete.

Figure 4-6. iRev 4 Zero Calibration Display
5. Apply the test weights to the scale. Press the Calibrate Span button to perform the span calibration (see Figure 4-7). A message box appears when the process is complete.

Figure 4-7. iRev 4 Span Calibration Display
6. If the option for chains or hooks was selected in step 3, the Rezero display is shown (see Figure 4-8). Remove all weights from the scale, including chains or hooks. Press the Re-Zero button to calibrate the zero offset.

Figure 4-8. iRev 4 Rezero Display
7. If performing a multi-point linear calibration, up to five other calibration weight values can be entered on the display shown in Figure 4-9. The weights must be in ascending order and must not include zero or the span weight. Enter the weight values and click the Go button to calibrate each point.

Figure 4-9. iRev 4 Linear Calibration Display
8. Review the new calibration values then click Finish to close the Calibration Wizard. To restore the current calibration values, click Cancel.

Figure 4-10. iRev 4 Calibration Values Display

5.0 Using iRev

The iRev 4 utility provides a suite of functions used to support configuration, calibration, customization, and backup of the $920 i$ software. Hardware and software configuration, $920 i$ display setup for up to ten screen designs, stream and ticket formatting, setpoint configuration, database management, and iRite program editing are all supported by iRev 4 .
Calibration values, scale, setpoint, and display configuration, database tables, and user programs, can be both saved and restored to the $920 i$ using iRev 4. (See Section 4.4 on page 57 for iRev 4 calibration procedures.)
Other supporting applications provided with iRev 4 include:

- The iRev 4 Editor provides a basic editor and a compiler for writing iRite applications.
- The Rice Lake Web Update utility uses your internet connection to check for and download updates to the i Rev 4 and $920 i$ software.
- The iLaunch utility can be installed to display a set of icons used for convenient startup of iRev 4 and its supporting applications, including the Help system.

NOTE: If using iQUBE 1, use iRev 3. If using iQUBE ${ }^{2}$ or no iQUBE, use iRev 4.

Hardware and Software Requirements

Minimum system requirements: 166 MHz , $x 86$-compatible, with 32MB RAM (64MB for NT4/ 2000), 40MB disk space. Recommended system: 233 $\mathrm{MHz}, x 86$-compatible or greater, with 64 MB RAM, 40 MB disk space.
iRev 4 runs on most Windows ${ }^{\circledR}$ operating systems, including Windows 95 (original release), Windows 95 OSR2, Windows 98, Windows 98 SE, Windows ME, Windows NT 4.0 (SP4 or greater), Windows 2000, Windows XP (Home or Professional), and Windows Vista ${ }^{\text {TM }}$.
When used with the original release of Windows 95, iRev 4 requires an updated version of TAPI. The TAPI update is included on the iRev 4 installation CD and is available from the RLWS web site at www.ricelake.com.
Internet Explorer ${ }^{\circledR}$ (IE) 4.0 or greater is required to use the iRev 4 help system. IE is included on the iRev 4 installation CD or is available for download from Microsoft.

5.1 Installing and Starting the Program

iRev 4 is installed using a standard Windows installation procedure. iRev 4 applications and support files are installed in a directory named iRev; icons for the iRev 4 application, the iRev 4 Editor, Uninstall and the Rice Lake Web Update utility are placed in the Windows Start menu.

5.2 Saving and Opening Files

Files are stored with the . 920 extension. To save a file,

1. From the File menu, select Save As...
2. Navigate to the desired save location and click Save.
To open a saved file in iRev 4,
3. Locate and double-click the file. Or, from iRev 4's File menu, select Open... Then, navigate to and select the desired file.
To open a saved file in iRev 3 (for use with $i Q U B E$ 1),
4. Launch iRev 3.
5. From the File menu, select Open...
6. Navigate to and select the desired file.

5.3 Hardware Configuration

When iRev 4 is started, the Hardware Configuration display is shown (Figure 5-1). This display is used to create a virtual hardware configuration for your indicator by dragging and dropping icons for the supported option cards into the empty slots on the display. The slots shown on the Hardware Configuration display represent the two option card slots on the $920 i$ CPU board (above) and up to twelve slots on attached expansion boards (slots 3-8 at left, 9-14 at right).

Figure 5-1. iRev 4 Hardware Configuration Display

5.4 Configuring Scales

Once the hardware configuration has been set, scales can be configured by selecting the parameter subsets listed at the left side of the Hardware Configuration display. For most applications, the Scales icon, under System Parameters, should be configured first, by associating each scale with an A/D channel or serial scale source. To assign the scale source, double-click on the scale number listed in the Scales menu (see Figure 5-2), then select the scale source type in the Config Scale dialog box.

Figure 5-2. iRev 4 Scales Menu

5.4.1 Configuring Other Parameters

Once the scale source is set, you can continue configuring the scale using the other icons listed under the System Parameters, or you can use the Scale Wizard (shown as a button on the Scales menu; also available under the Tools menu) to create a basic configuration based on your application type, units, capacity, and filtering requirements.
Other subsets of configuration parameters, including stream, print, and display formatting, can be accessed by selecting them from the list shown at the left side of the iRev 4 displays.

5.4.2 Setpoints

The Setpoints menu, available by clicking the Setpoints icon under System Parameters, provides access to all configuration parameters for up to 100 setpoints. Configured setpoints can be displayed individually or in groups of 5,10 , or 100 ; setpoint parameters can be changed only when shown individually. Click on the setpoint view icons in the toolbar to change the view.

When the setpoint view is set to a value greater than one, swap and move icons are added to the toolbar, allowing single or multiple setpoints to be reordered (see Figure 5-3).

Figure 5-3. iRev 4 Setpoints Display
The Batching Wizard, available under the Tools menu when viewing or changing setpoints, can be used to set up a basic batch sequence, based on the batch type, number of ingredients, and several batch options.

5.5 Configuring the Display

The iRev 4 display editor allows the $920 i$ display to be customized by dragging and dropping widgets onto a virtual display, then setting parameters specific to each widget type. (See Section 9.2 on page 101 for detailed information about widget programming.) Up to ten display configurations can be saved for each indicator file. Display configurations can be switched within applications using custom programs to drive the 920 i .

Figure 5-4. iRev 4 Display Editor

5.6 Connecting to the Indicator

Connect the PC serial port to port 2 of the 920i. Return to the Hardware Configuration display, then click on the Connect icon in the toolbar. iRev 4 attempts to establish communications to the indicator.
Once communications is established, iRev 4 queries the indicator configuration to determine whether the indicator hardware matches the virtual hardware configured in the current i Rev 4 file. If the hardware matches, the Hardware Configuration section of i Rev 4 is disabled, preventing further changes.
If the hardware does not match, you are given the option of either canceling the connect operation or overwriting the iRev 4 hardware configuration with the actual indicator hardware configuration.

5.6.1 Downloading to the Indicator

The Download Configuration function on the iRev 4 Communications menu allows an iRev 4 configuration file (with or without scale calibration data), setpoint data, widgets, database tables, or an iRite program file to be downloaded to a connected indicator in setup mode.
The Download Current Display function on the Communications menu allows you to download only the currently displayed object, such as the parameter set for one scale of a multi-scale configuration.
Because less data is transferred using Download Current Display, it is typically faster than a full configuration download, but there is an increased possibility that the download may fail due to dependencies on other objects. If the download fails, try performing a complete download using the Download Configuration function.
A progress message is displayed during the download indicating the progress of the download and also during the clear memory indicating its progress.

5.6.2 Uploading Configuration to iRev

The Upload Configuration function on the iRev 4 Communications menu allows the existing configuration of a connected indicator to be saved to a file on the PC. Once saved, the configuration file provides a backup that can be quickly restored to the indicator if needed. Or, the file can be edited within iRev 4, then downloaded back to the indicator.
NOTE: The indicator must be in setup mode before uploading or downloading data.

5.7 Installing Software Upgrades

New releases of the $920 i$ system software can be downloaded and installed using an internet connection and the Rice Lake Web Update application.
NOTE: Before upgrading to a new version of $920 i$ system software, ensure that a copy of the current indicator configuration has been saved using iRev 4. Reloading the
system software requires a RESETCONFIGURATION function and resets all configuration and calibration values to their factory defaults.

Figure 5-5. Rice Lake Web Update Display
Click on the Check for Updates button in the Rice Lake Web Update application to check if a new version of the $920 i$ software is available. To download a new software version, select the new software version and click on Get Selection. Once the new software is downloaded to the PC, do the following:

1. Disconnect power to the 920 i.
2. Connect the PC serial port to port 2 of the $920 i$. Connection must be made at 38400 bps .
3. Open the indicator enclosure and place a jumper across the SW1 boot mode pins (see Figure 2-6 on page 12).
4. Power up the 920 i. The indicator will stall at the diagnostic monitor.
5. Click on the Update Indicator button to download the new software. When the download begins, the following messages are shown:
Loading...
System Diagnostic Monitor v1.14
$\$$
$?$
\$
\$KNIX
\$SYSLOAD
6. When the download is complete, the indicator display shows the following messages:
\$DONE
\$BOOT
Loading...
7. The indicator resets and goes to weigh mode.
8. Disconnect power to the indicator. Remove the jumper from across the SW1 boot mode pins and place it on a single pin.
9. Power up the indicator and reload iRev 4 and iRite files as necessary.

6.0 Print Formatting

The $920 i$ provides print formats that determine the format of the printed output when the PRINT key is pressed, a KPRINT serial command is received, or when setpoint push-print or truck weigh-in or weigh-out operations are performed. Supported print formats are: GFMT, NFMT, ACCFMT, SPFMT, TRWIN, TRWOUT, ALERT, AUXFMT1—AUXFMT20, and AUDITFMT. Additionally, two header formats, HDRFMT1 and HDRFMT2, can be inserted into any of the other ticket formats using the $<\mathrm{H} 1>$ and $<\mathrm{H} 2>$ formatting commands. The particular ticket format used for a given print operation depends on the indicator configuration (see Table 6-3 on page 64) and the particular operation performed.
Each print format can be customized to include up to 1000 characters of information, such as company name and address, on printed tickets. You can use the $i \operatorname{Rev} 4^{\mathrm{TM}}$ configuration utility, serial commands, or the indicator front panel (PFORMT menu) to customize the print formats.

6.1 Print Formatting Commands

Table 6-1 lists commands you can use to format the $920 i$ print formats. Commands included in the format strings must be enclosed between < and > delimiters. Any characters outside of the delimiters are printed as text on the ticket. Text characters can include any ASCII character that can be printed by the output device.

Command	Description	Supported Ticket Formats
General Weight Data Commands		
<G>	Gross weight, current scale	GFMT, NFMT, TRWIN. TRWOUT, ACCFMT, AUXFMTxx, ALERT
<G\#n>	Gross weight, scale n	
<N>	Net weight, current scale	
<N\#n>	Net weight, scale n	
<T>	Tare weight, current scale	
<T\#n>	Tare weight, scale n	
<S>	Current scale number	
NOTES: Gross, net, tare, accumulator, truck, and setpoint weights can be printed in any configured weight units by adding the following modifiers to the gross, net, and tare weight commands: /P (primary units), /D (displayed units), /S (secondary units), /T (tertiary units). If not specified, the current displayed units (/D) is assumed. Example: To format a ticket to show net weight for Scale \#3 in secondary units, use the following command: <N\#3/S> Formatted weight strings contain a 10-digit weight field (including sign and decimal point, with leading zeroes suppressed), followed by a space and a two-digit units identifier. Total field length with units identifier is 12 (or 13) characters.		
Accumulator Commands		
<A>	Accumulated weight, current scale	GFMT, NFMT, ACCFMT, AUXFMTxx
<A\#n>	Accumulated weight, scale n	
<AA>	Average accumulation, current scale	
<AA\#n>	Average accumulation, scale n	
<AC>	Number of accumulations, current scale	
<AC\#n>	Number of accumulations, scale n	
<AT>	Time of last accumulation, current scale	
<AT\#n>	Time of last accumulation, scale n	
<AD>	Date of last accumulation, current scale	
<AD\#n>	Date of last accumulation, scale n	

Table 6-1. Print Format Commands

Command	Description	Supported Ticket Formats
Truck Mode Commands		
<TID>	Truck ID number	TRWIN, TRWOUT
<TR1>	Gross weight for current ticket in displayed units	
<TR2>	Tare weight for current ticket in displayed units	
<TR3>	Net weight for current ticket in displayed units	
NOTE: TR1, TR2, and TR3 truck ticket weight data includes keywords INBOUND, KEYED, RECALLED, as necessary.		
Setpoint Commands		
<SCV>	Setpoint captured value	SPFMT
<SN>	Setpoint number	
<SNA>	Setpoint name	
<SPM>	Setpoint mode (gross or net label)	
<SPV>	Setpoint preact value	
<STV>	Setpoint target value	
Auditing Commands		
<CD>	Last calibration date	All
<NOC>	Number of calibrations	
<NOW>	Number of weighments since last calibration	
NOTES: Last calibration date (<CD>) and number of calibrations (<NOC>) are updated whenever WZERO, WVAL, WSPAN, or REZERO are changed. Number of weighments (<NOW> command) is incremented whenever the scale weight exceeds 10% of scale capacity. Scale must return to gross or net zero before the value can be incremented again.		
Formatting and General-Purpose Commands		
<nnn>	ASCII character (nnn = decimal value of ASCII character). Used for inserting control characters (STX, for example) in the print stream.	All
<TI>	Time	
<DA>	Date	
<TD>	Time and date	
<UID>	Unit ID number (up to 8 alphanumeric characters)	
<CN>	Consecutive number (up to 7 digits)	
< H 1 >	Insert header format 1 (HDRFMT1); see Table 6-3 on page 64	
<H2>	Insert header format 2 (HDRFMT2); see Table 6-3 on page 64	
<CR>	Carriage return character	
<LF>	Line feed character	
<NLnn>	New line ($n n=$ number of termination ($<C R / L F>$ or $<C R>$) characters)*	
<SPnn>	Space ($n n=$ number of spaces)*	
<SU>	Toggle weight data format (formatted/unformatted)	
NOTE: * If $n n$ is not specified, 1 is assumed. Value must be in the range 1-99.		
User Program-dependent Commands		
<USnn>	Insert user print text string (from user program, SetPrintText API)	All
<EV x >	Invoke user program print handler x (PrintFmtx)	AUXFMTx
<AN>	Enables the addition of an Alibi Ticket Number	All

Table 6-1. Print Format Commands (Continued)

Command	Description	Supported Ticket Formats
Alert Forma	Commands	
<COMP>	Company name (up to 30 characters)	All
<COAR1> <COAR2> <COAR3>	Contact company address, lines 1-3 (up to 30 characters)	
<CONM1> <CONM2> <CONM3>	Contact names (up to 20 characters)	
$\begin{aligned} & \text { <COPH1> } \\ & \text { <COPH2> } \\ & \text { <COPH3> } \end{aligned}$	Contact phone numbers (up to 20 characters)	
<COML>	Contact e-mail address (up to 30 characters)	
<ERR>	Alert error message (system-generated)	ALERT
See the iQUBE ${ }^{2}$ Installation Manual, PN 106113, for more information about using alerts.		

Table 6-1. Print Format Commands (Continued)

6.2 LaserLight Commands

Table 6-2 lists commands to operate the Stop, Go (circle or arrow) and Off display elements on a LaserLight. These commands are used for front panel softkeys.

Traffic Light State	Aux Fmt	Dry Contact	Serial Command
Stop	AuxFmt1	Dig0 and Dig1 open circuit	\|OODO3!
Green Circle	AuxFmt2	Dig0 open circuit; Dig1 pulled low	\|O0DO2!
Green Arrow	AuxFmt2	Dig0 pulled low; Dig1 open circuit	\|OODO1!
Off	AuxFmt3	Dig0 and Dig1 pulled low	IOODO0!

Table 6-2. LaserLight Commands

6.3 Default Print Formats

Table 6-3 shows the default print formats for the $920 i$ and lists the conditions under which each print format is used. HDRFMT1 and HDRFMT2 specify header information that can be used by other ticket formats. The contents of HDRFMTx can be inserted by using the <H1> and <H2> formatting commands.

Format	Default Format String	Used When
GFMT	GROSS<G><NL2><TD><NL>	Normal mode, no tare in system
NFMT	$\begin{aligned} & \text { GROSS<G><NL>TARE<SP><T><NL>NET<SP2><N> } \\ & <\text { NL2><TD><NL> } \end{aligned}$	Normal mode, tare in system
ACCFMT	ACCUM<A><NL><DA><TI><NL>	Accumulator enabled and displayed, or setpoint print operation with PSHACCM=ON
SPFMT	<SCV><SP><SPM><NL>	Setpoint print operation with PSHPRNT=ON
TRWIN	<NL>ID<SP><TID><NL2>GROSS<TR1> <NL2><DA><SP><Tl><NL>	Press the Weigh In softkey, enter truck ID number, and press enter.
TRWOUT	<NL6>ID<SP><TID><NL2>GROSS<TR1><NL>TARE<SP> <TR2><NL>NET<SP2><TR3><NL2><DA><SP><Tl><NL>	Press the Weigh Out softkey, enter truck ID number, and press enter.
TRFMT	REG ID: <TID>: <TR2> SCALE<S> <TD><NL>	Truck register currently displayed

Table 6-3. Default Print Formats

Format	Default Format String	Used When
ALERT	```<COMP><NL><COAR1><NL><COAR2><NL><COAR3><NL> <CONM1><NL><COPH1><NL> <CONM2><NL><COPH2><NL> <CONM3><NL><COPH3><NL> <COML><NL><ERR><NL>```	Alert message is sent to specified port when error indication is generated by an attached $i Q U B E^{2}$. See the $i Q U B E^{2}$ Installation Manual, PN 106113, for more information.
HDRFMT1 HDRFMT2	COMPANY NAME<NL>STREET ADDRESS<NL> CITY, ST ZIP<NL2>	Must be inserted into other print format
AUXFMTxx	GROSS<G><NL2><TD><NL>	Formats AUX1FMT-AUX20FMT
AUDITFMT	Fixed format; cannot be edited	Press PRINT when audit trail is displayed, or in response to a DUMPAUDIT serial command.

NOTES: In OIML and CANADA modes, the letters PT (preset tare) are automatically inserted after the printed tare weight. When using Version 3 of iRev with older indicator software, the single auxiliary format (AUXFMT) is handled as AUXFMT1.

Table 6-3. Default Print Formats

6.4 Customizing Print Formats

The following sections describe procedures for customizing print formats using the iRev 4 configuration utility, serial commands, or the front panel (PFORMT menu. See Section 10.6 on page 112 for information about custom stream formatting.

6.4.1 Using iRev

The iRev 4 configuration utility provides a ticket formatting grid with a tool bar. The grid allows you to construct the ticket format without using the formatting commands (<NL> and $<\mathrm{SP}>$) required by the front panel or serial command methods. Using iRev 4, you can type text directly into the grid, then select weight value fields from the tool bar and place them where you want them to appear on the printed ticket.
Figure 6-1 shows an example of the iRev 4 print formatting display.

Figure 6-1. iRev Print Formatting Display

6.4.2 Using the Front Panel

If you have no access to equipment for communication through a serial port or are working at a site where such equipment cannot be used, you can use the PFORMT menu (see Figure 6-2 on page 66) to customize the print formats.

Figure 6-2. PFORMT Мепи
Each print format can be edited from the front panel using a character selection like that shown in Figure 6-3. Use the navigation keys (up, down, left, right) to move around and between the format command line and the character selection list.

Figure 6-3. Print Formatting Character Selection Display

- To add a character: position the cursor in the format where you want to add the character. Use the up key to return to the character selection list, use the navigation keys to highlight the character to add, then press enter. The new character is added to the left of the current cursor location in the format string.
- To add a blank space to a string, position the cursor to the right of where the space is to be inserted in the format string, highlight the $S P$ character in the selection list, and press enter.
- To delete a character, position the cursor to the right of the character to be deleted from the format string, then press the CLR key.
- To add a special character, insert the < and > delimiter characters from the selection list. Use the numeric keypad to insert the decimal ASCII value (1-255) of the character between the delimiters. For example, insert <2> to add the STX character to the print format.
To save the edited format string, position the cursor in the format string and press enter. Softkeys shown on the character selection display provide additional functions:

Default	Restores the string to its default value.
Home	Positions cursor at the beginning of the format string.
Cancel	Exits without saving changes to the format string.
End	Positions cursor at the end of the format string.
Restore	Restores the string to its previously saved value.

A Print Test softkey is shown under the FMT parameter after exiting the character selection display. If a printer is attached, this key can be used to verify the edited string format before exiting setup mode.
NOTE: The Print Test softkey is not available for the HDRFMTx formats. These formats can be output only when inserted into one of the printable ticket formats by using the $<\mathrm{H} 1>\mathrm{Or}<\mathrm{H} 2>$ print format commands.

6.4.3 Using Serial Commands

With a personal computer, terminal, or remote keyboard attached to one of the $920 i$ serial ports, you can use the serial command set described in Table 6-1 on page 62 to customize the print format strings.
To view the current setting of a format string, type the name of the print format and press the enter key. For example, to check the current configuration of the GFMT format, type GFMT.FMT and press enter. The indicator responds by sending the current configuration for the gross format:

GFMT.FMT=<G> GROSS<NL>
To change the format, use the GFMT.FMT or NFMT.FMT serial command followed by an equals sign (=) and the modified print format string. For example, to add the name and address of a company to the gross format, you could send the following serial command:

GFMT.FMT=MOE'S DUMP<NL>2356 EAST HIGHWAY ROAD<NL>SMALLTOWN<NL2><G> GROSS<NL>
A ticket printed using this format might look like the following:

```
MOE'S DUMP
2356 EAST HIGHWAY ROAD
SMALLTOWN
```

1345 LB GROSS
The ticket above could also be formatted by specifying the company address information in the HDRFMT1 ticket format, then substituting the <H1> command for the address in the GFMT ticket format:

HDRFMT1=MOE'S DUMP<NL>2356 EAST HIGHWAY ROAD<NL>SMALLTOWN<NL2>
GFMT.FMT $=<\mathrm{H} 1><\mathrm{G}>$ GROSS $<$ NL $>$

7.0 Truck Modes

The truck in/out modes are used to handle multiple truck ID numbers and weights. Truck IDs can be up to 16 alphanumeric characters in length.
Six truck modes combine stored ID, keyed tare, and value swapping features in various ways:

Mode	Stored IDs	Keyed Tares	Value Swapping	
MODE1	NO	YES	YES	
MODE2	NO	NO	YES	
MODE3	YES	YES	YES	
MODE4	YES	NO	YES	
MODE5	YES	YES	NO	
MODE6	YES	NO	NO	
OFF				

Table 7-1. Truck Mode Features
Stored IDs let you keep a database of truck IDs and weigh-in weights in the indicator's memory. The indicator can automatically store up to 1000 truck IDs and tares; or it can clear the information after printing a weigh-out ticket. For example, if the same truck seldom crosses the scale, it may not be practical to save its ID number and weigh-in weight. However, if that same truck crosses the scale many times each day, it's more convenient to store the information in the indicator memory and recall it when needed. Stored IDs and weights are available in modes $3,4,5$, and 6 .
Keyed tares allow you to manually enter the tare weight using the numeric keypad and the TARE key. Keyed tares are available in modes 1,3 , and 5 . To use keyed tares, an incoming truck must be empty at weigh-in, full at weigh-out.
NOTE: Some local regulations require the tare weight to be read from the scale. If so, don't use the keyed tares feature.
Value swapping ensures that the lowest of two weight values associated with a particular ID number is used as the tare weight. For example, if a truck crosses the scale fully loaded at weigh-in, then unloads and crosses the scale empty at weigh-out, the indicator automatically assigns the lesser (empty truck) weight as the tare. Value swapping is available in modes 1,2 , 3 , and 4.
NOTE: In the OIML regulatory mode, modes 5 and 6 are not allowed to complete a transaction if the outbound weight is greater than the inbound weight. In this case, the indicator will display an error message "Illegal Weighment" because a negative net weight cannot be printed as a legal weight.

7.1 Using the Truck Modes

To select a truck in/out mode, press the setup switch to enter setup mode. Use the navigation keys to go to the FEATURE menu, then to the TRUCK submenu to select the mode.

Next, go right to the SOFTKEYS submenu and configure the Weigh In, Weigh Out, and Truck Regs softkeys. These keys are required when using the truck modes.

Figure 7-1. 920i Display, showing Truck Mode Softkeys

7.2 Using the Truck Regs Display

The Truck Regs display is shown by pressing the Truck Regs softkey in weighing mode. The display contains an alphabetical list of stored truck IDs, weigh-in weights (in primary units), and the time and date of the weigh-in transaction (see Figure 7-2).

Figure 7-2. Truck Register Display
Softkeys shown at the bottom of the Truck Regs display are described below.

Page Up Shows previous page of the truck register.
Page Down Shows next page of the truck register.

Cancel Exits to weighing mode.
Delete Deletes the highlighted truck ID from the truck register.
Delete All Deletes all truck IDs from the truck register.
The truck register can be printed to an attached printer by pressing the PRINT key while the Truck Regs display is shown. The printed register uses the TRFMT print format (see Section on page 64).

NOTE: If a non-zero setpoint password is configured (SPPWD parameter on the FEATURE menu), you must enter the password before any truck register entries can be deleted.

7.3 Weigh-In Procedure

In modes 1 and 2, the indicator erases truck ID numbers and tare weights from memory after the transaction. In modes 3-6,the truck ID and weigh-in weight values are saved after the weigh-out ticket has been processed.
The general weigh-in procedure is as follows:

1. The empty truck moves onto the scale for weigh-in.
2. Press the Weigh In softkey.
3. A prompt is shown to enter the truck ID (up to eight alphanumeric characters). Enter the ID, then press the enter key.
4. Indicator generates the weigh-in ticket:
```
ID 304812
GROSS 15000. LB INBOUND
01/14/2002 10:24 AM
```

5. Truck leaves the scale.

7.4 Weigh-Out Procedure

The general weigh-out procedure is as follows:

1. The loaded truck moves onto the scale for weigh-out.
2. If truck ID is known, press the Weigh Out softkey, enter the ID, and press the enter key.
If ID is not known, press the Truck Regs softkey to view list of stored IDs (see Figure 7-2 on page 68). Scroll to the correct truck ID, note the ID number, then press the Cancel softkey to return to the weight display. From the weight display, press Weigh Out, key in the ID, then press the enter key.
3. Indicator generates the weigh-out ticket. In modes 1 and 2, the ID is deleted once the weigh-out ticket is processed.

7.5 Single-Transaction Tare Weights and IDs

One-time transactions are supported in all modes that can be configured to use stored IDs (modes 3-6). This function allows one-time weighing of trucks without adding the truck ID and weigh-in weight to the permanent truck register.
To use this function, press the Weigh In or Weigh Out softkey, then enter a truck ID containing a decimal point. IDs entered with a decimal point as part of the ID are erased from the truck register when the transaction is complete.

8.0 Setpoints

The $920 i$ indicator provides 100 configurable setpoints for control of both indicator and external equipment functions. Setpoints can be configured to perform actions or functions based on specified parameter conditions. Parameters associated with various setpoint kinds can, for example, be configured to perform functions (print, tare, accumulate), to change the state of a digital output controlling indicator or external equipment functions, or to make conditional decisions. NOTE: Weight-based setpoints are tripped by values specified in primary units only.

8.1 Batch and Continuous Setpoints

$920 i$ setpoints can be either continuous or batch setpoints.
Continuous setpoints are free-running: the indicator constantly monitors the condition of free-running setpoints at each A/D update. The specified setpoint action or function is performed when the designated setpoint parameter conditions are met. A digital output or function assigned to a free-running setpoint continuously changes state, becoming active or inactive, as defined by the setpoint parameters.
Batch setpoints are active one at a time, in an ordered sequence. The $920 i$ can use setpoints to control up to 100 separate batch processing steps.
A digital output associated with a batch setpoint is active until the setpoint condition is met, then latched for the remainder of the batch sequence.
To use batch setpoints, you must activate the BATCHNG parameter on the SETPTS menu. This parameter defines whether a batch sequence is automatic or manual. AUTO sequences repeat continuously, while MANUAL sequences require a BATSTRT signal. The BATSTRT signal can be initiated by a digital input, serial command, Batch Start softkey, or the StartBatch function in an iRite program.
For setpoint kinds that can be used as either continuous or batch setpoints, the BATCH parameter must also be set ON. (Setpoint kinds that can only be used as batch setpoints do not require the BATCH parameter.) If the setpoint is defined but the BATCH parameter is off, the setpoint operates as a continuous setpoint, even during batch sequences.
NOTE: In applications that contain both batch setpoint routines and continuous setpoints, continuous setpoints should be kept separate from the batch sequence. This is especially true when using CONCUR or TIMER setpoints to perform actions or functions based on the batch sequence. CONCUR and TIMER setpoints should not be included in the referenced START and END setpoint sequence.

Kind	Description	Batch	Continuous
OFF	Setpoint turned off/ignored.		
GROSS	Gross setpoint. Performs functions based on the gross weight. The target weight entered is considered a positive gross weight.	X	X
NET	Net setpoint. Performs functions based on the net weight. The target weight entered is considered a positive net weight value.	X	X
-GROSS	Negative gross weight. Performs functions based on the gross weight. The target weight entered is considered a negative gross weight.	X	X
-NET	Negative net weight. Performs functions based on the net weight. The target weight entered is considered a negative net weight value.	X	X
ACCUM	Accumulate setpoint. Compares the value of the setpoint to the source scale accumulator. The accumulator setpoint is satisfied when the value of the source scale accumulator meets the value and conditions of the accumulator setpoint.	X	X
ROC	Rate-of-change setpoint. Performs functions based on the rate-of-change (ROC) value.	X	X
+REL	Positive relative setpoint. Performs functions based on a specified value above areferenced setpoint, using the same weight mode as the referenced setpoint.	X	X

Table 8-1. Setpoint Kinds

Kind	Description	Batch	Continuous
-REL	Negative relative setpoint. Performs functions based on a specified value below a referenced setpoint, using the same weight mode as the referenced setpoint.	X	X
\%REL	Percent relative setpoint. Performs functions based on a specified percentage of the target value of a referenced setpoint, using the same weight mode as the referenced setpoint. The actual target value of the \%REL setpoint is calculated as a percentage of the target value of the referenced setpoint.	X	X
RESREL	Relative to a result setpoint. Performs functions based on a specified percentage of the captured value of a referenced setpoint, using the same weight mode as the referenced setpoint. The actual target value of the RESREL setpoint is calculated as a percentage of the captured value of the referenced setpoint, rather than the target value.	X	X
PAUSE	Pauses the batch sequence indefinitely. A BATSTRT signal must be initiated to continue the batch process.	X	
DELAY	Delays the batch sequence for a specified time. The length of the delay (in tenths of a second) is specified on the VALUE parameter.	X	
WAITSS	Wait for standstill. Suspends the batch sequence until the scale is at standstill.	X	
COUNTER	Specifies the number of consecutive batch sequences to perform. Counter setpoints should be placed at the beginning of a batch routine.	X	
AUTOJOG	Automatically checks the previous weight-based setpoint to verify the setpoint weight value is satisfied in a standstill condition. If the previous setpoint is not satisfied when at standstill, the AUTOJOG setpoint activates the digital output of the previous weight-based setpoint for a period of time, specified on the VALUE parameter. The autojog process repeats until the previous weight-based setpoint is satisfied when the scale is at standstill. NOTE: The AUTOJOG digital output is typically used to signify that an autojog operation is being performed. AUTOJOG should not be assigned to the same digital output as the related weight-based setpoint.	X	
COZ	Center of zero. Monitors for a gross zero condition. The digital output associated with this setpoint kind is activated when the referenced scale is a center of zero. No value is required for this setpoint.		X
INMOTON	In motion. Monitors for an in-motion condition. The digital output associated with this setpoint is activated when the scale is not at standstill. No value is required for this setpoint.		X
INRANGE	In range. Monitors for an in-range condition. The digital output associated with this setpoint is activated when the scale is within capacity range. No value is required for this setpoint.		X
BATCHPR	Batch processing signal. The digital output associated with this setpoint is activated whenever a batch sequence is in progress. No value is required for this setpoint.		X
TIMER	Tracks the progress of a batch sequence based on a timer. The timer value, specified in tenths of a second on the VALUE parameter, determines the length of time allowed between start and end setpoints. The indicator START and END parameters are used to specify the start and end setpoints. If the END setpoint is not reached before the timer expires, the digital output associated with this setpoint is activated.		X

Table 8-1. Setpoint Kinds (Continued)

Kind	Description	Batch	Continuous
CONCUR	Allows a digital output to remain active over a specified portion of the batch sequence. Two types of concur setpoints can be configured: Type 1 (VALUE=0): The digital output associated with this setpoint becomes active when the START setpoint becomes the current batch step and remains active until the END setpoint becomes the current batch step. Type 2 (VALUE > 0): If a non-zero value is specified for the VALUE parameter, that value represents the timer, in tenths of a second, for this setpoint. The digital output associated with this setpoint becomes active when the START setpoint becomes the current batch step and remains active until the timer expires.		X
DIGIN	Digital input setpoint. Requires a specific group of digital inputs to be in low (0 VDC) state to satisfy the setpoint. The digital output associated with this setpoint is held in a low (0 VDC) state until the inputs selected for the digital input mask are all in a low state.	X	X
AVG	Average setpoint. Performs functions based on the calculated average weight over a specified number of A / D samples. Note that this setpoint is based on the raw A/D weight value, rather than the rounded value shown on the indicator display. For example, if the display shows 50.0 but the actual raw A/D value is 49.99 , the setpoint will not be satisfied.	X	
TOD	Time of day setpoint. Performs functions when the internal clock time of the indicator matches the specified setpoint time.	X	X
DELTA	Delta weight setpoint. Satisfied when the change in weight on the scale is equal to or exceeds the absolute value specified for the setpoint.	X	
CHKWEI	Checkweigher setpoint. Allows specification of over- and under-weight values. Up to three digital outputs can be configured to represent overweight, underweight, and accept conditions.		X
PLSCNT	Pulse counter setpoint. Performs functions based on pulse counts received by a pulse input card.	X	X
PLSRAT	Pulse rate setpoint. Performs functions based on the pulse rate received by a pulse input card.		X
ALWAYS	Always setpoint. This setpoint is always satisfied. It is typically used to provide an endpoint for true/false branching batch routines.	X	
NEVER	Never setpoint. This setpoint is never satisfied. It is used to branch to a designated setpoint in true/false branching batch routines in which the batch will not continue through the normal sequence of batch setpoints.	X	
DINCNT	Digital input count setpoint. Counts pulses received at the specified digital input.	X	X

Table 8-1. Setpoint Kinds (Continued)

8.2 Setpoint Menu Parameters

Figure 8-1 shows the general structure of the SETPTS menu. Submenus (indicated by Go to X in Figure 8-1) for various groups of setpoint kinds are shown on the following pages (Figures 8-3 through 8-9); parameter descriptions for the submenus are provided in Table 8-2 on page 82.
See Table 8-1 on page 70 for descriptions of each of the setpoint kinds.

Figure 8-1. SETPTS Menu

Figure 8-2. GROSS, NET,-GROSS, -NET, ACCUM, and ROC Setpoint Parameters

Figure 8-3. + REL, - REL, $\%$ RELS and RESREL Setpoint Parameters

Figure 8-4. PAUSE, COUNTER, DELAY, WAITSS, and AUTOJOG Setpoint Parameters

Figure 8-5. COZ, INMOTON, INRANGE, and BATCHPR Setpoint Parameters

Figure 8-6. DIGIN, AVG, and TOD Setpoint Parameters

Figure 8-7. DELTA and CHKWEI Setpoint Parameters

Figure 8-8. PLSCNT and PLSRAT Setpoint Parameters

Figure 8-9. ALWAYS, NEVER, and DINCNT Setpoint Parameters

SETPTS Menu		
Parameter	Choices	Description
Level 2 submenus		
SETPT 1SETPT 100	OFF GROSS NET -GROSS -NET ACCUM ROC +REL -REL \%REL RESREL PAUSE DELAY WAITSS COUNTER AUTOJOG COZ INMOTON INRANGE BATCHPR TIMER CONCUR DGIN AVG TOD DELTA CHKWEI PLSCNT PLSRAT ALWAYS NEVER DINCNT	Specifies the setpoint kind. GROSS, NET, -GROSS, -NET, ACCUM, ROC, +REL, -REL, \%REL, RESREL. DIGIN, DINCNT, AVG, and TOD setpoint kinds can be used as either batch or continuous setpoints. PAUSE, DELAY, WAITSS, COUNTER, AUTOJOG, DELTA, PLSCNT, ALWAYS, and NEVER setpoint kinds can only be used in batch sequences. COZ, INMOTON, INRANGE, BATCHPR, TIMER, CONCUR, PLSRAT, and CHKWEI setpoint kinds can only be used as continuous setpoints. See Table 8-1 on page 70 for more information about setpoint kinds.
BATCHNG	OFF AUTO MANUAL	Batching enable. Set to AUTO or MANUAL to allow a batch sequence to run. MANUAL requires a BATSTRT digital input, BATSTART serial command, Batch Start softkey, or the StartBatch function in an iRite program before the batch sequence can run. AUTO allows batch sequences to repeat continuously.

Table 8-2. Setpoint Menu Parameters

SETPTS Menu

Parameter	Choices	Description
Level 4 submenus		
VALUE	number	Setpoint value. - For weight-based setpoints: Specifies the target weight value, 0-99999999. - For time-based setpoints: Specifies, in 0.1-second intervals, a time value in the range 0-65535. - For COUNTER setpoints: Specifies the number of consecutive batches to be run, 0-65535. - For PLSCNT setpoints, specifies a number of pulses, 0-9999999, received by a pulse input card. - For PLSRAT setpoints, specifies a pulse rate in Hz, 0-65535, received by a pulse input card.
TRIP	HIGHER LOWER INBAND OUTBAND	Specifies whether the setpoint is satisfied when the weight is higher or lower than the setpoint value, within a band established around the value, or outside of that band. In a batch sequence with TRIP=HIGHER, the associated digital output is active until the setpoint value is reached or exceeded; with TRIP=LOWER, the output is active until the weight goes below the setpoint value.
BANDVAL	0-9999999	For setpoints with TRIP=INBAND or OUTBAND, specifies a weight equal to half the band width. The band established around the setpoint value is VALUE \pm BANDVAL.
HYSTER	0-9999999	Specifies a band around the setpoint value that must be exceeded before the setpoint, once off, can trip on again.
PREACT	OFF ON LEARN FLOW	Allows the digital output associated with a setpoint to shut off before the setpoint is satisfied to allow for material in suspension. The ON value adjusts the setpoint trip value up or down (depending on the TRIP parameter setting) from the setpoint value using a fixed value specified on the PREVAL parameter. The LEARN value can be used to automatically adjust the preact value after each batch. LEARN compares the actual weight at standstill to the target setpoint value, then adjusts the preact PREVAL by the PREADJ value times the difference after each batch. FLOW preact provides dynamic compensation for material flow rate in determining when to shut off the digital output. Rather than waiting for the specified weight to be reached, FLOW preact uses the change in weight over time to anticipate when the TRIP minus PREACT weight value will be reached.
PREVAL	0-9999999	Specifies the preact value for setpoints with PREACT set to ON, LEARN, or FLOW. Depending on the TRIP setting specified for the setpoint, the setpoint trip value is adjusted up or down by the PREVAL value.
PREADJ	$\begin{aligned} & 0.500000 \\ & 0-9999999 \end{aligned}$	Preact adjustment factor. For setpoints with PREACT set to LEARN, specifies a decimal representation of the percentage of error correction applied $(0.5=50 \%, 1.0$ $=100 \%$) each time a PREACT adjustment is made.
PRESTAB	$\begin{array}{\|l\|} \hline 0 \\ 0-65535 \end{array}$	Preact stabilization time-out. For setpoints with PREACT set to LEARN, specifies the time, in 0.1 -second intervals, to wait for standstill before adjusting the PREACT value. Setting this parameter to a value greater than zero disables the learn process if standstill is not achieved in the specified interval.
PCOUNT	$\begin{aligned} & 1 \\ & 0-65535 \end{aligned}$	Preact learn interval. For setpoints with PREACT set to LEARN, specifies the number of batches after which the preact value is recalculated. The default value, 1, recalculates the preact value after every batch cycle.

Table 8-2. Setpoint Menu Parameters (Continued)

SETPTS Menu		
Parameter	Choices	Description
TOLBAND	$\begin{aligned} & 0 \\ & 0-9999999 \end{aligned}$	Tolerance band. For setpoints with TRIP set to HIGHER or LOWER, specifies a tolerance band around the target weight. If the captured weight is not within the specified tolerance band, the preact learn function is not applied and the batch is paused (based on the value of the TOLCNT parameter, below) until restarted or reset.
TOLCNT	$\begin{aligned} & 1 \\ & 0-65535 \end{aligned}$	Tolerance count. For setpoints with TRIP set to HIGHER or LOWER, specifies the number of consecutive batch cycles in which the tolerance band (TOLBAND parameter) must be exceeded before the batch process is paused. When the specified value is met, the batch is paused and an error message is displayed. The batch must be restarted or reset to clear the error message. The special value of zero means that the batch is never paused for an out-of-tolerance condition.
RELNUM	1-100	For relative setpoints, specifies the number of the relative setpoint. The target weight for this setpoint is determined as follows: - For +REL setpoints, the value of the relative setpoint plus the value (VALUE parameter) of the +REL setpoint - For -REL setpoints, the value of the relative setpoint minus the value of the -REL setpoint - For \%REL setpoints, the percentage (specified on the VALUE parameter of the \%REL setpoint) of the target value of the relative setpoint - For RESREL setpoints, the percentage (specified on the VALUE parameter of the RESREL setpoint) of the captured value of the relative setpoint
BATCH	OFF ON	Specifies whether the setpoint is used as a batch (ON) or continuous (OFF) setpoint.
CLRACCM	OFF ON	Specify ON to clear the accumulator when the setpoint is satisfied
CLRTARE	OFF ON	Specify ON to clear the tare when the setpoint is satisfied
PSHACCM	OFF ON ONQUIET	Specify ON to update the accumulator and perform a print operation when the setpoint is satisfied. Specify ONQUIET to update the accumulator without printing.
PSHPRNT	OFF ON WAITSS	Specify ON to perform a print operation when the setpoint is satisfied; specify WAITSS to wait for standstill after setpoint is satisfied before printing.
PSHTARE	OFF ON	Specify ON to perform an acquire tare operation when the setpoint is satisfied. NOTE: PSHTARE acquires the tare regardless of the value specified for the REGULAT parameter on the FEATURE menu.
NOTE: If two or more of the CLRxxxx and PSHxxxx parameters are set on, the actions specified by those parameters are performed in the following order when the setpoint is satisfied: 1) clear accumulator; 2) clear tare; 3) accumulate; 4) print; 5) acquire tare.		
ALARM	OFF ON	Specify ON to display the word ALARM on the primary display while the setpoint is active (batch setpoints) or while the setpoint is not tripped (continuous setpoints).
START	1-100	Specifies the starting setpoint number. Do not specify the number of the TIMER or CONCUR setpoint itself. The TIMER or CONCUR setpoint begins when the starting setpoint begins.
END	1-100	Specifies the ending setpoint number. Do not specify the number of the TIMER or CONCUR setpoint itself. The TIMER or CONCUR setpoint stops when the ending setpoint begins.

Table 8-2. Setpoint Menu Parameters (Continued)

SETPTS Menu

Parameter	Choices	Description
ACCESS	$\begin{aligned} & \text { ON } \\ & \text { HIDE } \\ & \text { OFF } \end{aligned}$	Specifies the access allowed to setpoint parameters shown by pressing the Setpoint softkey in normal mode. ON: Values can be displayed and changed HIDE: Values cannot be displayed or changed OFF: Values can be displayed but not changed
NAME	NONE, 1-60	Specify the number of an assigned prompt. Up to 60 prompt names can be specified on the PROMPTS submenu of the FEATURE menu.
SLOT	slot_number	Lists all available digital I/O slots. This parameter specifies the slot number of the digital I/O card referenced by the DIGOUT parameter.
DIGOUT	bit_number	Lists all digital output bits available for the specified SLOT. This parameter is used to specify the digital output bit associated with this setpoint. Use the DIG I/O menu to assign bit function to OUTPUT. For continuous setpoints, the digital output becomes active (low) when the condition is met; for batch setpoints, the digital output is active until the setpoint condition is met.
BRANCH	$\begin{array}{\|l\|} \hline 0 \\ 1-100 \end{array}$	Specifies the setpoint number to which the batch sequence is to branch if the current setpoint is not satisfied upon initial evaluation. The special value zero indicates that no branch is taken.
TIME	time	For TOD setpoints, specifies the time at which the setpoint becomes active. The format used to enter the time (12-hour or 24-hour) is based on the value specified for the TIMEFMT parameter on the FEATURE menu.
DURATION	hh:mm:ss	For TOD setpoints, specifies the length of time that the digital output associated with this setpoint changes state. The value is entered in hours, minutes, and seconds (hh:mm:ss). All other operations associated with this setpoint (print, tare, or accumulate) are performed at the end of the specified duration.
NSAMPLE	1-65535	For AVG setpoints, specify the number of A/D samples used to calculate the average weight.
SOURCE	source_scale	Specify the scale number used as the source for the setpoint.
DIN SLOT	slot_number	For DIGIN and DINCNT setpoints, specify the slot number from which digital inputs will be read.
DIN MASK	digital_input_mask	For DIGIN and DINCNT setpoints, specify the bits used as inputs to the setpoint. Use the Select softkey to select bits.
VUNDER	0-9999999	For CHKWEI setpoints, specifies the lower weight limit.
VOVER	0-9999999	For CHKWEI setpoints, specifies the upper weight limit.
DUNDER	digital_output	For CHKWEI setpoints, specifies the bit number of digital output activated when the scale weight is less than the VUNDER value specified.
DACCEPT	digital_output	For CHKWEI setpoints, specifies the bit number of digital output activated when the scale weight between the VUNDER and VOVER values specified.
DOVER	digital_output	For CHKWEI setpoints, specifies the bit number of digital output activated when the scale weight is greater than the VOVER value specified.
COAST	0-65535	For PLSCNT setpoints, specifies the time delay (in 0.1-second intervals) inserted between reaching the setpoint target value and capture of the actual pulse count.
SENSE	NORMAL INVERT	Specifies whether the value of the digital output associated with this setpoint is inverted when the setpoint is satisfied.

Table 8-2. Setpoint Menu Parameters (Continued)

8.3 Batch Operations

Softkeys can be configured to allow operator control of batch operations from the $920 i$ front panel (see Figure 8-10), Softkeys can be configured using iRev 4, serial commands, or the FEATURE menu (see Section 3.2.3 on page 42).

Figure 8-10. Batching Softkeys
Setpoint Display or change assigned setpoints.
Batch Start Starts batch process.
Batch Pause Pauses an active batch and turns off all digital outputs except those associated with concurrent and timer setpoints. Processing is suspended until Batch Start is pressed again. Pressing Batch Start resumes the batch and re-energizes all digital outputs turned off by the Batch Pause.
Batch Reset Stops and resets an active batch to the beginning of the process.
Batch Stop Stops an active batch and turns off all associated digital outputs.
! Warning
To prevent personal injury and equipment damage, software-based interrupts must always be supplemented by emergency stop switches and other safety devices necessary for the application.

Batching Switch

The batching switch option, PN 19369, comes as a complete unit in an FRP enclosure, with legend plate, locking stop switch (mushroom button), and a run/ start/abort 3-way switch.
Both switches are wired into the indicator's digital I/O terminal strip as shown in Figure 8-12. Each switch uses a separate digital input.

Once cables and switches have been connected to the indicator, use the setup switch to place the indicator in setup mode. Use the DIG I/O menu (see Section 3.2.6 on page 50) to configure digital input and output functions.

Figure 8-11. Batching Switch
When configuration is complete, exit setup mode. Initialize the batch by turning the 3 -way switch to $A B O R T$, then unlock the STOP button (the STOP button must be in the OUT position to allow the batch process to run). The batching switch is now ready to use.

If no digital input is assigned to BATRUN, batching proceeds as if BATRUN were always on: the batch will start when the 3-way switch is turned to RUN, but the STOP mushroom button will not function.

ABORT/RUN/START SWITCH

Figure 8-12. Batching Switch Wiring Diagram Example

To begin a batch process, turn the 3-way switch to START momentarily. If the STOP button is pushed during the batch process, the process halts and the button locks in the IN position.
The START switch is ignored while the STOP button is locked in the IN position. The STOP button must be turned counterclockwise to unlock it, then released into the OUT position to enable the 3-way switch.
To restart an interrupted batch from the step where it left off, do the following:

1. Unlock STOP button (OUT position)
2. Turn 3-way switch to START

To restart an interrupted batch from the first batch step, do the following:

1. Turn 3-way switch to ABORT
2. Unlock STOP button (OUT position)
3. Turn 3-way switch to START

NOTE: Use this procedure (or the BATRESET serial command) to initialize the new batch routine following any change to the setpoint configuration.

8.4 Batching Examples

Example 1

The following example is used to dispense $100-\mathrm{LB}$ drafts, automatically refilling a hopper to 1000 LB gross weight once the gross weight has dropped below 300 LB.
Setpoint 1 ensures that the hopper has enough material to start the batch. If the hopper weight is 100 LB or higher, setpoint 1 is tripped.

```
SETPOINT=1
KIND=GROSS
VALUE=100
TRIP=HIGHER
BATCH=ON
ALARM=ON
```

Setpoint 2 waits for standstill, performs a tare, and puts the indicator into net mode.

```
SETPOINT=2
KIND=WAITSS
PSHTARE=ON
```

Setpoint 3 is used as a reference (relative setpoint) for setpoint 4.

```
SETPOINT=3
KIND=NET
VALUE=0
TRIP=HIGHER
BATCH=OFF
```

Setpoint 4 is used to dispense material from the hopper. When the hopper weight goes below 100 LB net the setpoint is tripped.

```
SETPOINT=4
KIND=-REL
VALUE=100
TRIP=LOW
BATCH=ON
DIGOUT=1
RELNUM=3
```

Setpoint 5 is used to evaluate the gross weight of material in the hopper after dispensing. When the hopper weight falls below 300 LB , digital output 2 becomes active and the hopper is refilled to 1000 LB .

```
SETPOINT=5
KIND=GROSS
VALUE=300
TRIP=HIGHER
HYSTER=700
BATCH=ON
DIGOUT=2
```

Setpoint 6 is used as a "no flow alarm". If the process in setpoint 4 is not completed in 10 seconds, digital output 4 becomes active to signify a problem.

```
SETPOINT=6
KIND=TIMER
VALUE=100
START=4
END=5
DIGOUT=4
```


Example 2

The following example uses a CONCUR setpoint to provide a two-speed simultaneous fill of a hopper to a net weight of 1000 LB .
Setpoint 1 ensures that the gross weight is within 50 LB of gross zero.

```
SETPOINT=1
KIND=GROSS
VALUE=0
TRIP=INBAND
BANDVAL=50
BATCH=ON
```

Setpoint 2 performs a tare once the scale is at standstill.

SETPOINT=2
KIND=WAITSS
PSHTARE=ON

Setpoint 3 uses DIGOUT 1 to fill a hopper to a net weight of 800 LB .

SETPOINT=3
KIND=NET
VALUE=800
TRIP=HIGHER
$\mathrm{BATCH}=\mathrm{ON}$
DIGOUT=1
Setpoint 4 uses DIGOUT 2 to fill the hopper to a net weight of 1000 LB .

SETPOINT=4
KIND=NET
VALUE=1000
TRIP=HIGHER
$\mathrm{BATCH}=\mathrm{ON}$
DIGOUT=2
Setpoint 5 operates DIGOUT 2 while Setpoint 3 is active, providing simultaneous two-speed filling.

SETPOINT=5
KIND=CONCUR
VALUE=0
TRIP=HIGHER
START=4
END=5
DIGOUT=2

9.0 Serial Commands

The $920 i$ indicator can be controlled by a personal computer or remote keyboard connected to an indicator serial port. Control is provided by a set of serial commands that can simulate front panel key press functions, display and change setup parameters, and perform reporting functions. The serial commands provide the capability to print configuration data or to save that data to an attached personal computer. This section describes the serial command set and procedures for saving and transferring data using the serial ports.

9.1 The Serial Command Set

The serial command set can be divided into five groups: key press commands, reporting commands, the RESETCONFIGURATION special function command, parameter setting commands, and transmit weight data commands.
When the indicator processes a serial command, it responds with the message $O K$. The $O K$ response verifies that the command was received and has been executed. If the command is unrecognized or cannot be executed, the indicator responds with ??.

9.1.1 Key Press Commands

Key press serial commands (see Table 9-1) simulate pressing the keys on the front panel of the indicator. These commands can be used in both setup and normal (weighing) mode. Several of the commands serve as "pseudo" keys, providing functions that are not represented by a key on the front panel.
For example, to enter a 15 -pound tare weight using serial commands:

1. Type K1 and press ENTER (or RETURN).
2. Type K5 and press ENTER.
3. Type KTARE and press ENTER.

Command	Function
KBASE	Select current scale (Example: KBASE, K2, KENTER to select Scale \#2)
KZERO	In normal mode, press the ZERO key
KGROSSNET	In normal mode, press the GROSS/NET key
KGROSS	Go to gross mode (pseudo key)
KNET	Go to net mode (pseudo key)
KTARE	Press the TARE key
KUNITS	In weighing mode, press the UNITS key
KPRIM	Go to primary units (pseudo key)
KSEC	Go to secondary units (pseudo key)

Table 9-1. Serial Key Press Commands

Command	Function
KTER	Go to tertiary units (pseudo key)
KPRINT	In normal mode, press the PRINT key
KDISPACCUM	Press the ACCUM key
KDISPTARE	Display tare (pseudo key)
KCLR	Press the CLEAR key
KCLRCN	Reset consecutive number (pseudo key)
KCLRTAR	Clear tare from system (pseudo key)
KLEFT	In setup mode, move left in the menu
KRIGHT	In setup mode, move right in the menu
KUP	In setup mode, move up in the menu; in normal mode, scroll up to previous configured scale.
KDOWN	In setup mode, move down in the menu; in normal mode, scroll down to the next configured scale.
KSAVE	In setup mode, saves the current configuration
KSAVEEXIT	In setup mode, saves the current configuration then exits to normal mode
KCLRNV	In sdetup mode, clears non-volatile RAM
K0-K9	Press number 0 (zero) through 9
KDOT	Press the decimal point (.)
KENTER	Press the ENTER key
KSOFTx	Press softkey number x
KLOCK	Lock specified front panel key. For example, to lock the ZERO key, enter KLOCK=KZERO.
KUNLOCK	Unlock specified front panel key. For example, to unlock the PRINT key, enter KUNLOCK=KPRINT.
KID	Display Unit ID entry screen
KTREG	Display truck register
KWIN	Process truck weigh-in transaction Example: KWIN, K2, K3, KENTER to select ID \#23)
KWOUT	Process truck weigh-out transaction
KDEL	While truck register is displayed, delete truck register
KSETPOINT	Display setpoint configuration (pseudo key)
KDATE	Display date (pseudo key)
KTIME	Display time (pseudo key)
KTIMEDATE	Display time and date (pseudo key)

Table 9-1. Serial Key Press Commands (Continued)

9.1.2 Reporting Commands

Reporting commands send specific information to the serial port. The commands listed in Table 9-2 can be used in either setup mode and normal mode.

Command	Function
DUMPALL	List all parameter values
SPDUMP	Print setpoint configuration
VERSION	Write 920i software version
HARDWARE	Lists option cards installed in slots 1-14. See Section 10.1.2 on page 107 for more information about using the HARDWARE command.
HWSUPPORT	Reports the CPU part number (67612 = old) (109549 = new)
XE	Returns a10-digit code representing any error conditions currently shown on the front panel. See Section 10.1.4 on page 108 for more information.

Table 9-2. Reporting Commands

9.1.3 Clear and Reset Commands

The following commands can be used to clear and reset the 920i:

PCLR: Program clear. Erases the loaded user program (setup mode only).
RS: Reset system. Resets the indicator without resetting the configuration.
RESETCONFIGURATION: Restores all configuration parameters to their default values (setup mode only). The RESETCONFIGURATION function can also be initiated by pressing the Reset Config softkey under the VERSION menu. Use the up key to select Clear entire indicator configuration, then press ENTER to reset the indicator.

NOTE: All load cell calibration settings are lost when the RESETCONFIGURATION command is run.

9.1.4 Parameter Setting Commands

Parameter setting commands allow you to display or change the current value for a particular configuration parameter (Tables 9-3 through 9-12).
Current configuration parameter settings can be displayed in either setup mode or normal mode using the following syntax: command<ENTER>

Most parameter values can be changed in setup mode only; setpoint parameters listed in Table 9-6 on page 95 can be changed when in normal weighing mode.
Use the following command syntax when changing parameter values: command=value<ENTER>, where value is either a number or a parameter value. Use no spaces before or after the equal (=) sign. If you type an incorrect command, the display reads ??.
For example, to set the motion band parameter on Scale \#1 to 5 divisions, type the following:

SC.MOTBAND\#1=5D<ENTER>
For parameters with selectable values, enter the command and equal sign followed by a question mark: command=?<ENTER> to see a list of those values. The indicator must be in setup mode to use this function.
NOTE: Some parameters are valid only if other parameters or parameter values are specified. See the configuration menus in Section 3.2 on page 25 for information about parameter dependencies. Restrictions for front-panel configuration also apply to serial command configuration.

Command	Description	Values
SC.SRC\#n	Scale source	```Specify scale source as: SC.SRC\#n =y,z.a y Scale type: A A/D scale B Analog input S Serial scale or \(i Q U B E^{2}\) T Total scale P Program scale z Port number (for serial scale or \(i Q U B E^{2}\) only) .a \(i Q U B E^{2}\) system identifier (defaults to .1)```
SC.GRADS\#n	Graduations	1-9999999
SC.SPLIT\#n	Multi-range or multi-interval scale type	OFF, 2RNG, 3RNG, 2INTVL, 3INTVL

Table 9-3. SCALES Serial Commands

Command	Description	Values
SC.ZTRKBND\#n	Zero track band	0, 0-100
SC.ZRANGE\#n	Zero range	1.900000, 0-100
SC.MOTBAND\#n	Motion band	1, 0-100
SC.SSTIME\#n	Standstill time	1-65535
SC.OVRLOAD\#n	Overload	FS+2\%, FS+1D, FS+9D, FS
SC.WMTTHRH\#n	Weighment threshold	grads
SC.NUMWEIGH\#n	Number of weighments	-
SC.MAX_WEIGHT\#n	Maximum weight	-
$\begin{aligned} & \hline \text { SC.DIGFLTR1\#n } \\ & \text { SC.DIGFLTR2\#n } \\ & \text { SC.DIGFLTR3\#n } \end{aligned}$	Digital filtering	1, 2, 4, 8, 16, 32, 64, 128, 256
SC.DFSENS\#n	Digital filter cutout sensitivity	2OUT, 4OUT, 8OUT, 160UT, 320UT, 64OUT, 1280UT
SC.DFTHRH\#n	Digital filter cutout threshold	NONE, 2D, 5D, 10D, 20D, 50D, 100D, 200D, 250D
SC.RATLTRAP\#n	Rattletrap filtering	OFF, ON
SC.SMPRAT\#n	Sample rate	30HZ, 60HZ, 120HZ, 240HZ, 480HZ, 960HZ
SC.PWRUPMD\#n	Power up mode	GO, DELAY
SC.TAREFN\#n	Tare function	BOTH, NOTARE, PBTARE, KEYED
SC.PRI.DECPNT\#n	Primary units decimal position	$\begin{aligned} & \text { 8.888888, 88.88888, 888.8888, 8888.888, 88888.88, 888888.8, } \\ & \text { 8888888, 8888880, 8888800 } \end{aligned}$
SC.PRI.DSPDIV\#n	Primary units display divisions	1D, 2D, 5D
SC.PRI.UNITS\#n	Primary units	LB, KG, G, OZ, TN, T, GN, TROYOZ, TROYLB, LT, CUSTOM, NONE, OFF
SC.PRI.CUNITS\#n	Primary custom units	Specify units if SC.PRI.UNITS=CUSTOM
SC.SEC.DECPNT\#n	Secondary units decimal position	8.888888, 88.88888, 888.8888, 8888.888, 88888.88, 888888.8, 8888888, 8888880, 8888800
SC.SEC.DSPDIV\#n	Secondary units display divisions	1D, 2D, 5D
SC.SEC.UNITS\#n	Secondary units	LB, KG, G, OZ, TN, T, GN, TROYOZ, TROYLB, LT, CUSTOM, NONE, OFF
SC.SEC.CUNITS\#n	Secondary custom units	Specify units if SC.SEC.UNITS=CUSTOM
SC.SEC.MULT\#n	Secondary units multiplier	0.00000-9999999
SC.TER.UNITS\#n	Tertiary units	LB, KG, G, OZ, TN, T, GN, TROYOZ, TROYLB, LT, CUSTOM, NONE. OFF
SC.TER.CUNITS\#n	Tertiary custom units	Specify units if SC.TER.UNITS=CUSTOM
SC.TER.DECPNT\#n	Tertiary units decimal position	$\begin{aligned} & \text { 8.888888, 88.88888, 888.8888, 8888.888, 88888.88, 888888.8, } \\ & \text { 8888888, 8888880, 8888800 } \end{aligned}$
SC.TER.DSPDIV\#n	Tertiary units display divisions	1D, 2D, 5D
SC.TER.MULT\#n	Tertiary units multiplier	0.000001-99999999
SC.ROC.DECPNT\#n	Tertiary units decimal position	8.888888, 88.88888, 888.8888, 8888.888, 88888.88, 888888.8, 8888888, 8888880, 8888800
SC.ROC.DSPDIV\#n	Rate-of-change units display divisions	1D, 2D, 5D
SC.ROC.MULT\#n	Rate-of-change units multiplier	0.000001-9999999
SC.ROC.UNITS\#n	Rate-of-change units	SEC, MIN, HOUR
SC.ROC.INTERVL\#n	Rate-of-change interval	1-100

Table 9-3. SCALES Serial Commands (Continued)

Command	Description	Values
SC.ROC.REFRESH\#n	Rate-of-change refresh interval	$0.1-60$
SC.RANGE1.MAX\#n	Weight maximum for first range or interval	weight
SC.RANGE2.MAX\#n	Weight maximum for second range or interval	weight
SC.RANGE3.MAX\#n	Weight maximum for third range or interval	weight
SC.ACCUM\#n	Accumulator enable	ON, OFF
SC.VISIBLE\#n	Scale visibility	ON, OFF
SC.PEAKHOLD\#n	Peak hold	OFF, NORMAL, BI-DIR, AUTO
SC.WZERO\#n	Zero calibration	-
SC.WVAL\#n	Test weight value	test_weight_value
SC.WSPAN\#n	Span calibration	-
SC.WLIN.F1\#n- SC.WLIN.F5\#n	Actual raw count value for linearization points 1-5	$0-16777215$
SC.WLIN.V1\#n- SC.WLIN.V5\#n	Test weight value for linearization points 1-5	$0.000001-99999999$
SC.WLIN.C1\#n- SC.WLIN.C5\#n	Calibrate linearization points $1-5$	-
SC.LC.CD\#n	Deadload coefficient	-
SC.LC.CW\#n	Span coefficient	-
SC.LC.CZ\#n	Temporary zero	-
SC.REZERO\#n	Rezero	-
For commands ending with "\#n", n is the scale number.		

Table 9-3. SCALES Serial Commands (Continued)

Command	Description	Values
EDP.INPUT\#p	Port serial input function	CMD, KEYBD, KBDPRG, SCALE, IND SC, DISPLAY, IQUBE2 See the $i Q U B E^{2}$ Installation Manual, PN 106113, for more information about configuring $i Q U B E$ serial scales.
EDP.BAUD\#p	Port baud rate	$\begin{aligned} & 300,600,1200,2400,4800,9600,19200,28800,38400,57600, \\ & 115200 \end{aligned}$
EDP.BITS\#p	Port data bits/parity	8NONE, 7EVEN, 7ODD, 8ODD, 8EVEN
EDP.TERMIN\#p	Port termination character	CR/LF, CR
EDP.STOPBITS\#p	Port stop bits	2, 1
EDP.ECHO\#p	Port echo	ON, OFF
EDP.RESPONSE\#p	Poer response	ON, OFF
EDP.EOLDLY\#p	Port end-of-line delay	0-255 (0.1-second intervals)
EDP.HANDSHK\#p	Port handshaking	OFF, XONXOFF, HRDWAR
EDP.PORTTYPE\#p	Port type	232, 485
EDP.DUPLEX\#p	Port RS-485 duplex	HALF, FULL

Table 9-4. SERIAL Port Serial Commands

Command	Description	Values
EDP.ADDRESS\#p	Port RS-485 address	0,1-255
EDP.STREAM\#p	Port streaming	OFF, LFT, INDUST, 4KEYS, KEYPAD, DISPLAY
EDP.SOURCE\#p	Port source scale for output	scale_number
EDP.SFMT\#p	Port custom stream format	0-50 characters
STR.POS\#p	Custom stream identifiers	Specify replacement text for token Example: STR.PRI\#1=L See Section 10.6 on page 112 for more information about custom stream formatting.
STR.NEG\#p		
STR.PRI\#p		
STR.SEC\#p		
STR.TER\#p		
STR.GROSS\#p		
STR.NET\#p		
STR.TARE\#p		
STR.MOTION\#p		
STR.RANGE\#p		
STR.OK\#p		
STR.INVALID\#p		
STR.ZERO\#p		
For commands including "\#p", p is the serial port number.		

Table 9-4. SERIAL Port Serial Commands (Continued)

Command	Description	Values
SD	Set date	MMDDYY, DDMMYY, YYMMDD, or YYDDMM. Enter six-digit date using the year-month-day order specified for the DATEFMT parameter, using only the last two digits of the year.
ST	Set time	hhmm (enter using 24-hour format)
DATEFMT	Date format	MMDDYYYY, DDMMYYYY, YYYYMMDD, YYYYDDMM
DATESEP	Date separator	SLASH, DASH, SEMI
TIMEFMT	Time format	$12 H O U R, 24 H O U R$
TIMESEP	Time separator	COLON, COMMA
DECFMT	Decimal format	DOT, COMMA
DSPRATE	Display rate	$1-80$, in100-ms intervals
CONSNUM	Consecutive numbering	$0-9999999$
CONSTUP	Consecutive number start-up value	$0-9999999$
UID	Unit identifier	aaaaaaaa (up to 8 alphanumeric characters)
TRUCK	Truck in/out mode	OFF, MODE1, MODE2, MODE3, MODE4, MODE5, MODE6
ALIBI	Alibi data storage	OFF, ON
CONTRAST	Adjusts the contrast level	$0-127$
CFGPWD	Configuration password	$0,1-9999999$
SPPWD	Setpoint password	$0,1-9999999$

Table 9-5. FEATURE Serial Commands

Command	Description	Values
SK\#1-SK\#32	Softkey assignment	Blank, TimeDate, DspTar, DspAcc, DspROC, SetPt, BatStrt, BatStop, BatPause, BatRst, Weighln, WeighOut, TrkReg, UID, ScISel, Diagnostics, Alibi, Contrast, Test, Stop, Go, SKUD1-SKUD10
SKT\#1-SKT\#10	User-defined softkey text	-
KYBDLK	Keyboard lock (disable keypad)	OFF, ON
ZERONLY	Disable all keys except ZERO	OFF, ON
PROMPT\#1PROMPT\#60	Prompts/setpoint names	-
REGULAT	Regulatory compliance	NONE, OIML, NTEP, CANADA, INDUST
REG.SNPSHOT	Display or Scale weight source	DISPLAY, SCALE
REG.HTARE	Allow tare in display hold	NO, YES
REG.ZTARE	Remove tare on ZERO	NO, YES
REG.KTARE	Always allow keyed tare	NO, YES
REG.MTARE	Multiple tare action	REPLACE, REMOVE, NOTHING
REG.NTARE	Allow negative tare	NO, YES
REG.CTARE	Allow clear keyed tare	NO, YES
REG.CHILDZT	Clear child scales individually	NO, YES
REG.NEGTOTAL	Allow total scale to display negative value	NO, YES
REG.PRTMOT	Allow print while in motion	NO, YES
REG.PRINTPT	Add PT to keyed tare print	NO, YES
REG.PRTHLD	Print during display hold	NO, YES
REG.HLDWGH	Allow weighment during display hold	NO, YES
REG.MOTWGH	Allow weighment in motion	NO, YES
REG.OVRBASE	Zero base for overload calculation	CALIB ZERO, SCALE ZERO
REGWORD	Regulatory word	GROSS, BRUTTO
CONTACT.COMPANY	Contact company name	company_name (up to 30 characters)
CONTACT.ADDR1 CONTACT.ADDR2 CONTACT.ADDR3	Contact company address	company_address (up to 30 characters for each line)
CONTACT.NAME1 CONTACT.NAME2 CONTACT.NAME3	Contact names	contact_names (up to 20 characters each)
CONTACT.PHONE1 CONTACT.PHONE2 CONTACT.PHONE3	Contact phone numbers	contact_phone_numbers (up to 20 characters each)
CONTACT.EMAIL	Contact e-mail address	contact_e-mail_address (up to 30 characters)
NEXTCAL	Next calibration date	calibration_date
GRAVADJ	Gravitational adjustment	OFF, ON
LAT.LOC	Latitude	0-90 (to nearest degree of latitude)
ELEV.LOC	Elevation	± 0-9999 (in meters)
IMAGE	Display image	NEGATIVE, POSITIVE

Table 9-5. FEATURE Serial Commands (Continued)

Command	Description	Values
SP.KIND\#n	Setpoint kind	OFF, GROSS, NET, -GROSS, -NET, ACCUM, ROC, +REL, -REL, \%REL, RESREL, PAUSE, DELAY, WAITSS, COUNTER, AUTOJOG, COZ, INMOTON, INRANGE, BATCHPR, TIMER, CONCUR, DIGIN, AVG, TOD, DELTA, CHWEI, PLSCNT, PLSRAT, ALWAYS, NEVER, DINCNT
SP.VALUE\#n	Setpoint value	number
SP.SOURCE\#n	Source scale	SCALE1, SCALE2, SCALE3...SCALEx
SP.COAST\#n	Pulse counter coast	number
SP.TRIP\#n	Trip	HIGHER, LOWER, INBAND, OUTBAND
SP.BANDVAL\#n	Band value	number
SP.HYSTER\#n	Hysteresis	number
SP.PREACT\#n	Preact type	OFF, ON, LEARN, FLOW
SP.PREVAL\#n	Preact value	number
SP.PREADJ\#n	Preact adjustment percentage	number
SP.PRESTAB\#n	Preact learn stability	number
SP.PCOUNT\#n	Preact learn interval	number
SP.TOLBAND\#n	Target tolerance	number
SP.TOLCNT\#n	Tolerance count	number
SP.BATCH\#n	Batch step enable	OFF, ON
SP.CLRACCM\#n	Clear accumulator enable	OFF, ON
SP.CLRTARE\#n	Clear tare enable	OFF, ON
SP.PSHACCM\#n	Push accumulate	OFF, ON, ONQUIET
SP.PSHPRINT\#n	Push print	OFF, ON, WAITSS
SP.PSHTARE\#n	Push tare	OFF, ON
SP.ALARM\#n	Alarm enable	OFF, ON
SP.NAME\#n	Setpoint name number	NONE, 1-60
SP.ACCESS\#n	Setpoint access	OFF, ON, HIDE
SP.DSLOT\#n	Digital output slot	NONE, SLOTX
SP.DIGOUT\#n	Digital output	BITx
SP.SENSE\#n	Digital output sense	NORMAL, INVERT
SP.BRANCH\#n	Branch destination	0, 1-100
SP.RELNUM\#n	Relative setpoint number	1-100
SP.START\#n	Starting setpoint	1-100
SP.END\#n	Ending setpoint	1-100
SP.DISLOT\#n	Digital input slot	NONE, SLOTx
SP.MASK\#n	Digital input mask	number
SP.NSAMPLE\#n	Number of samples	number
SP.TIME\#n	Trip time	hhmm
SP.DURATION\#n	Trip duration	hhmmss
SP.VUNDER\#n	Underrange value	number
SP.VOVER\#n	Overrange value	number
SP.DUNDER\#n	Underrange digital output	BITx

Table 9-6. SETPNTS Serial Commands

Command	Description	Values
SP.DACCEPT\# n	Accept digital output	BIT x
SP.DOVER\#n n	Overrange digital output	BIT x
BATCHNG	Batching mode	OFF, AUTO, MANUAL
SP.ENABLE\#n	Setpoint enable	ON, OFF
For setpoint commands ending with "\# n ", n is the setpoint number.		

Table 9-6. SETPNTS Serial Commands (Continued)

Command	Description	Values
GFMT.FMT GFMT.PORT	Gross demand print format string	For .PORT commands, specify the port number as PORTxx (no leading zero). For example: GFMT.PORT=PORT3.
NFMT.FMT NFMT.PORT	Net demand print format string	For AUXFMT.FMT commands, specify the auxiliary format number (1-20) as AUXFMTxx (no leading zero). For example: AUX8FMT=GROSS<G><NL2>...
ACC.FMT ACC.PORT	Accumulator print format string	
format strings.		

Table 9-7. PFORMT Serial Commands

Command	Description	Values
DON.b\#s	Set digital output on (active) at bit b, slot s.	-
DOFF.b\#s	Set digital output off (inactive) at bit b, slot s.	-
DIO.b\#s	Digital input function	OFF, INPUT, OUTPUT, PROGIN, ZERO, NT/GRS,
		TARE, UNITS, PRINT, ACCUM, SETPNT,
		TIMDATE, ESC, CLEAR, DSPTAR, IDKEY,
		KEYO-KEY9, KEYDP, ENTER, NAVUP, NAVDN,
		NAVLT, NAVRGT, KBDLOC, HOLD, BATRUN,
		BATSTRT, BATPAUS, BATRESET, BATSTOP,
		CLRCN, GROSS, NET, PRIM, SEC, CLRTAR,
		CLRACC, TRIGGER

Table 9-8. DIG I/O Serial Commands

Command	Description	Values
DIO.TRIG_SLOT.b\#s	Trigger output slot	NONE, SLOT3
DIO.TRIG_PARAM.b\#s	Trigger output parameter	value
Digital inputs and outputs are specified by bit number (b) and slot number (s)		

Table 9-8. DIG I/O Serial Commands

Command	Description	
ALG.ALIAS\#s	Analog output alias	name
ALG.SOURCE\#s	Analog output source	PROG, SCALEn
ALG.MODE\#s	Mode	GROSS, NET
ALG.OFFSET\#s	Zero offset	$0 \%, 20 \%$
ALG.ERRACT\#s	Error action	FULLSC, HOLD, ZEROSC
ALG.MIN\#s	Minimum value tracked	$0-9999999$
ALG.MINNEG\#n	Minimum value is negative	OFF, ON
ALG.MAX\#S	Maximum value tracked	$0-9999999$
ALG.MAXNEG\#n	Maximum value is negative	OFF, ON
ALG.ZERO\#s	Zero calibration	$0-65535$
ALG.SPAN\#s	Span calibration	$0-65535$
For commands ending with "\#s", s is the slot number. For dual-channel analog output cards,channel 2 is assigned to ALGOUTs+14. For example, channel 2 of a dual analog output card in Slot 3 is assigned ALGOUT17.		

Table 9-9. ALGOUT Serial Commands (Valid Only If Analog Output Card Is Installed)

Command	Description	Values
FB.BYTESWAP\#s	Swap data bytes	NONE, BYTE, WORD, BOTH
FB.SIZE\#s	Number of bytes to transfer	$2-128$
For commands ending with "\#s", s is the slot number.		

Table 9-10. FLDBUS Serial Commands (Valid Only If Fieldbus Card Is Installed)

Command	Description	Values
XP\#s	Extract probe temperature	-
XPP\#s	Extract probe primary temperature	
XPS\#s	Extract probe secondary temperature	
XPT\#s	Extract probe tertiary temperature	
XI\#S	Extract 0-20 mA value	
XV\#S	Extract 0-10 V value	
For commands ending with "\#s", s is the slot number.		

Table 9-11. Analog Input Serial Commands (Valid Only If Analog Input Card Is Installed)

9.1.5 Normal Mode Commands

The normal mode print commands (see Table 9-12) transmit data to the serial port on demand in either setup or normal mode.

Command	Description	Values
CONSNUM	Set consecutive number	0-9 999999
UID	Set unit ID	nnnnnnn
SD	Set date	MMDDYY, DDMMYY, YYMMDD, or YYDDMM. Enter six-digit date using the year-month-day order specified for the DATEFMT parameter, using only the last two digits of the year.
ST	Set time	hhmm (enter using 24-hour format)
SX\#n	Start serial port streaming	OK or ??
EX\#n	Stop serial port streaming	The port streaming parameter (EDP.STREAM\#p) for the streaming port must be set to LFT or INDUST before using these commands. An EX command sent while in setup mode does not take effect until the indicator is returned to normal mode.
SF\#n	Transmit single frame of a stream	Sends a signal frame from scale n to the streaming port
RS	Reset system	Soft reset. Used to reset the indicator without resetting the configuration to the factory defaults.
SF\#n	Transmit single frame of stream	Sends a single frame from scale n to the streaming port
XA\#n	Transmit accumulator value in displayed units	nnnnnn UU
XAP\#n	Transmit accumulator value in primary units	
XAS\#n	Transmit accumulator value in secondary units	
XAT\#n	Transmit accumulator value in tertiary units	
XG\#n	Transmit gross weight in displayed units	nnnnnn UU
XGP\#n	Transmit gross weight in primary units	
XGS\#n	Transmit gross weight in secondary units	
XGT\#n	Transmit gross weight in tertiary units	
XN\#n	Transmit net weight in displayed units	nnnnnn UU
XNP\#n	Transmit net weight in primary units	
XNS\#n	Transmit net weight in secondary units	
XNT\#n	Transmit net weight in tertiary units	
XT\#n	Transmit tare weight in displayed units	nnnnnn UU
XTP\#n	Transmit tare weight in primary units	
XTS\#n	Transmit tare weight in secondary units	
XTT\#n	Transmit tare weight in tertiary units	
XE	Query system error conditions	nnnnn See Section 10.1.4 on page 108 for detailed information about the XE command response format.

Table 9-12. Normal Mode Serial Commands

9.1.6 Batching Control Commands

The commands listed in Table 9-13 provide batching control through the serial port.

Command	Description	Values
BATSTART	Batch start	If the BATRUN digital input is active (low) or not assigned, the BATSTART command can be used to start the batch program.
BATSTOP	Batch stop	Stops the batch program and turns off all associated digital outputs.
BATPAUSE	Batch pause	Stops the batch program at the current step. All digital outputs set on by the current step (except for those set by concur setpoints) are set off. The BATSTRT DIGIN, BATSTART serial command, Batch Start softkey, or the StartBatch function in an iRite program can be used to restart the batch program at the current step.
BATRESET	Batch reset	Stops the program and resets the batch program to the first batch step. Run the BATRESET command after making changes to the batch configuration.

Table 9-13. Batching Control Commands

9.1.7 Database Commands

The commands listed in Table 9-14 can be used to create and maintain databases in the 920i. Except for the Db.DELALL command, all of the database commands require an extension to identify the number of the database within the memory card and the slot number of the memory card.

Command	Description
DB.ALIAS.n\#x	Get or set database name
DB.CLEAR.n\#x	Clear database contents
DB.DATA.n\#x	Get or set database contents
DB.SCHEMA.n\#x	Get or set database structure
DB.DELALL	Delete all databases and database contents
n represents the database number within the memory card; x is the slot number of the memory card. Each command must be terminated with a carriage return character (<CR>, ASCll 13).	

Table 9-14. Database Commands

DB.ALIAS

The Db.alias command is used to get or set the alias used by iRite programs to reference the specified database. Each database alias must be unique among all databases and adhere to the following rules: 8 character maximum; must begin with an alpha character or an underscore; can only contain $\mathrm{A}-\mathrm{Z}$, a-z, $0-9$, or an underscore (_).
Example. The following command assigns an alias of TRUCKS_2 to the first database on the memory card installed in slot 2:

DB.ALIAS.1\#2=TRUCKS_2<CR>
Sending the DB.ALIAS command alone, without assigned data, returns the current database alias.

DB.CLEAR

To clear the contents of a database, send the following command:

DB.CLEAR. $n \# x<C R>$
Where:
n is the database number within the memory card x is the slot number of the memory card (0 is the onboard memory)
The $920 i$ responds with $\mathrm{OK}<\mathrm{CR}>$ if the command is successful, ??<CR> if unsuccessful.
DB.DATA
The DB.DATA command can be used to send data to or retrieve data from the 920 .
Data can be sent to the indicator using the following command:

DB.DATA. $n \# x=$ data $\{\mid\}<C R>$
Where:
n is the database number within the memory card
x is the slot number of the memory card (0 is the onboard memory)
data represents a single cell of a row of data
\{ | \} is a pipe character (ASCII 124), used to delimit cell data. If the data being sent is not the last cell of the row, append the pipe character to the data to indicate that more data is coming for that particular row. If the data being sent is the last cell of the row, do not append the pipe character.
If the command is accepted, the $920 i$ responds with OK<CR>; if not, it responds with ??<CR>.

Example. The following commands place the data shown in Table 9-15 into the first database in the onboard memory:

```
DB.DATA.1#0=this|<CR>
DB.DATA.1#0=is|<CR>
DB.DATA.1#0=a|<CR>
DB.DATA.1#0=test<CR>
DB.DATA.1#0=aaal<CR>
DB.DATA.1#0=bbb|<CR>
DB.DATA.1#0=cccl<CR>
DB.DATA.1#0=ddd<CR>
```

Record	Cell			
	1	2	3	4
	this	is	a	test
second	aaa	bbb	ccc	ddd

Table 9-15. Sample Database Contents
Sending the Db.data command alone, without assigned data, returns the database contents:

```
DB.DATA.n#x<CR>
```

The $920 i$ responds with the entire contents of the database. Returned data is cell-delimited with the pipe character (ASCII 124) and row-delimited with carriage returns (ASCII 13).
For example, the following command could be used to return the contents of database 1 in the onboard memory:

```
DB.DATA.1#0<CR>
```

If the database contents are the records shown in Table 9-15, the indicator responds with the following data, using pipe characters and carriage returns to delimit the database cells and rows, respectively:

```
this|is|a|test<CR>aaa|bbb|ccc|ddd<CR>
```

NOTE: There is no end of database notification at the end of the DB.DATA command transmission. Use a receive time-out to determine command completion. The time-out value will vary based on baud rate.
You should determine the number of records currently in the database both prior to and after sending the DB.DATA command to verify that the correct number of records are received. The number of records can be determined with the DB.SCHEMA command.
NOTE: The 62 K of onboard (slot 0) memory can be allocated to up to eight auxiliary databases. However, the size of any one database may limit the size and number of other databases.

DB.SCHEMA
The DB.SCHEMA command is used to get or set the structure of a database.

DB.SCHEMA. $n \# x<C R>$
The $920 i$ responds to the command above by returning the following:
<Max Records>, <Current Record Count>, <Column Name>,<Data Type>, <Data Size>,...<CR>

The <Column Name>, <Data Type>, and <Data Size> elements repeat for each column in the database.
The <Column Name> follows the rules for alias names: 8 character maximum; must begin with an alpha character or an underscore; can only contain $\mathrm{A}-\mathrm{Z}, \mathrm{a}-\mathrm{z}, 0-9$, or an underscore (_).
The <Data Type> is represented by a numeric field:

Value	Type
1	Byte
2	Short (16-bit integer)
3	Long (32-bit integer)
4	Single (32-bit floating point)
5	Double (64-bit floating point)
6	Fixed string
7	Variable string
8	Date and time

Table 9-16. Data Type Field Codes
The <Data Size> value must match the data type. A range of data size values is allowed only for the string data types:

Size	Value
Byte	1
Short	2
Long	4
Single	4
Double	8
Fixed string	$1-255$
Variable string	$1-255$
Date and time	8

Table 9-17. Data Size Field Codes
The DB.SCHEMA command can also be used to modify the schema, but only when the indicator is in setup mode and only if the database does not contain any data.

9.2 Widget Programming

The type and location of elements shown on the 920i display are easily specified using the drag and drop features of the iRev 4 utility. However, display widgets can also be programmed using serial commands while the $920 i$ is in setup mode, or through iRite programming. Up to ten different screens can be configured.
Serial command widget programming is accomplished in setup mode, using the WDGT serial command. The first parameter specified is the widget type, listed in Table 9-18. The following sections describe each of the widget types and the parameters and values specific to that type.
In setup mode, the WDGT.CLR serial command can be used to clear all specified widgets from the display.

Type	Description
1	Scale Widget
2	Bitmap Widget
3	Bargraph Widget
4	Label Widget
5	Numeric Widget
6	Symbol Widget

Table 9-18. Widget Types
Some widget types require that the location or size of the widget be specified, in pixels. Figure 9-18 shows the pixel counts (80 pixels per inch) used to specify the pixel location on the display.

Figure 9-1. Screen Location Pixel Values
Setting the data_source of bargraph, label, numeric, and symbol widgets to 2 (program) allows these widget types to be directly controlled by an iRite program rather than by indicator data. The user program must provide the code necessary for widget manipulation.

9.2.1 Scale Widgets

Scale widgets are used to present basic scale data from one or more configured scales. For multiple scale applications, up to four scale widgets can be configured to be shown on the display at any one time. Fewer displayed widgets allow each widget to be larger. Scale data from additional configured scales can be shown by scrolling up or down through all configured scales, including a total scale widget, if configured.

WDGT\#n=1, scale_widget_size, scales_displayed,

 screen_numberwhere:

```
n=widget number
1= scale widget type
scale_widget_size = 1-6 (size refers to numeral height)
    1: 1/4"
    2: 1/2"
    3: 3/4"
    4: 7/8"
    5: 1"
    6: 15/32"
scales_displayed = 1-4
screen_number = 1-10
```

Example:
WDGT\#1=1,2,1,2<CR>
creates a single $1 / 2^{\prime \prime}$ scale widget for screen number 2 .

9.2.2 Bitmap Widgets

Bitmap widgets provide a representation of vertical or horizontal tanks or a hopper. The location, size, and border style of the widget are specified on the WDGT command.

```
WDGT#n=2, left, top, width, height,border_style,
    bitmap_widget_style, name/alias, visible,
    screen_number
```

where:

```
\(n=\) widget number
2= bitmap widget type
left = left edge location, in pixels
top = top edge location, in pixels
width = width, in pixels
height \(=\) height, in pixels
border_style = 1 (none)
bitmap_widget_style \(=1\) (vertical tank), 2 (horizontal
    tank), 3 (hopper)
name/alias = text name or alias
visible \(=1\) (on) or 2 (off)
screen_number = 1-10
```

Example:
WDGT\#2=2,30,30,120,120,1,3,Hopper1,1,2<CR>
creates a visible, 1.5 " x $1.5^{\prime \prime}(120 \times 120$ pixel) hopper widget for screen 2, named Hopper1, with no border, with the upper left-hand corner of the bitmap at pixel location 30,30 (near upper left corner of display).

9.2.3 Bargraph Widgets

Bargraph widgets allow display of vertical or horizontal graphs, either a normal bargraph style or a needle gauge, with or without graduations. The graph can be used to represent scale weight or progress toward a setpoint target value.

WDGT\#n=3, left, top, width, height, border_style, bargraph_widget_style, graduations, orientation, name/alias, data_source, data_field, data_subfield, visible, screen_number
where:
$n=$ widget number
3= bargraph widget type
left = left edge location, in pixels
top $=$ top edge location, in pixels
width $=$ width, in pixels
height $=$ height, in pixels
border_style $=1$ (none) or 2 (fixed single)
bargraph_widget_style $=1$ (basic), 2 (meter)
graduations $=1$ (on), 2 (off)
orientation $=1$ (horizontal), 2 (vertical)
name/alias $=$ text name or alias
data_source $=1$ (scale), 2 (program), 3 (setpoint)
data_field
If data_source = 1, data_field is the scale channel number
If data_source $=3$, data_field is the setpoint number, $1-100$, or 0 (current setpoint)
data_subfield
If data_source $=1$, data_subfield is 1 (gross), 2 (net), 3 (displayed value)
If data_source $=3$ and bargraph_widget_style is 2 , data_subfield is the current value of the setpoint.
visible $=1$ (on) or 2 (off)
screen_number $=1-10$

Example:

WDGT\#2=3,30,30,30,100,2,1,1,2,,Graph1,1,1,1,1,2<CR>
creates a visible, 30×100 pixel bargraph widget for screen 2, named Graph1, with a single border, with the upper left-hand corner of the bargraph at pixel location 30,30 (near upper left corner of display). The bargraph is of the basic style (1), with graduations turned on (1) and is oriented vertically (2). Bargraph source is the gross weight from scale channel 1.

9.2.4 Label Widgets

Label widgets are used to insert a text label in the display.

WDGT\#n=4, left, top, width, caption, border_style, justification, font_size, name/alias, data_source, data_field, data_subfield, visible, screen_number
where:
$n=$ widget number
4= label widget type
left = left edge location, in pixels
top $=$ top edge location, in pixels
width $=$ width, in pixels
caption $=$ text caption
border_style $=1$ (none) or 2 (fixed single)
justification $=1$ (left), 2 (right), 3 (center)
font_size = 1 (9 pt), 2 (12 pt), 3 (18 pt)
name/alias $=$ text name or alias
data_source = 1 (scale), 2 (program), 3 (setpoint), 4 (caption text)
data_field
If data_source $=1$, data_field is the scale channel number
If data_source $=3$, data_field is the setpoint number, $1-100$, or 0 (current setpoint)
data_subfield
If data_source = 1, data_subfield is the scale alias (text
If data_source $=3$, data_subfield is the setpoint name
visible $=1$ (on) or 2 (off)
screen_number $=1-10$
Example:
WDGT\#2=4,60,60,120, Caption, 2,1,1,Label1,4,0,0,1,2<CR>
creates a visible, 30×100 pixel label widget for screen 2, named Label1, with a single border, with the upper left-hand corner of the label at pixel location 60,60 . The label is left-justified (1), with text in a $9-\mathrm{pt}$ font (1). Label source is the text specified for the caption (4)-the word "Caption".

9.2.5 Numeric Widgets

Numeric widgets are used to provide numeric information in the display.

WDGT\#n=5, left, top, width, border_style, justification, font_size, name/alias, data_source, data_field, data_subfield, visible, screen_number
where:

```
\(n=\) widget number
\(5=\) numeric widget type
left = left edge location, in pixels
top \(=\) top edge location, in pixels
width \(=\) width, in pixels
border_style \(=1\) (none) or 2 (fixed single)
justification = 1 (left), 2 (right), 3 (center)
font_size = 1 ( 9 pt\(), 2(12 \mathrm{pt}), 3\) (18 pt)
name/alias \(=\) text name or alias
data_source = 1 (scale), 2 (program), 3 (setpoint)
data_field
    If data_source \(=1\), data_field is the scale channel
        number
    If data_source \(=3\), data_field is the setpoint number,
        \(1-100\), or 0 (current setpoint)
```

```
data_subfield
    If data_source = 1, data_subfield can be:
        1 (gross, primary units)
        2 (gross, secondary units)
        3 (gross, tertiary units)
        4 (net, primary units)
        5 \text { (net, secondary units)}
        6 (net, tertiary units)
        7(displayed value)
        8 (rate of change value);
    If data_source = 3, data_subfield can be:
        1 (setpoint value)
        2 (preact value)
        3 (tolerance band value)
visible = 1 (on) or 2 (off)
screen_number = 1-10
```

Example:
WDGT\#2=5,60,60,120, 2,1,1,Numeric1,1,1,7,1,2<CR>
creates a visible, 120-pixel wide, numeric widget for screen 2, named Numeric1, with the upper left-hand corner of the label at pixel location 60,60. The label is left-justified (1), with text in a 9 -pt font (1). The widget shows the displayed weight (data_subfield = 7) from scale channel 1 (data_source $=1$, data field = 1).

9.2.6 Symbol Widgets

Symbol widgets provide icons to indicate a variety of alarms, conditions, or device states.

WDGT\#n=6, left, top, symbol_style, name/alias, data_source, data_field, data_subfield, visible, screen_number
where:
$n=$ widget number
$6=$ symbol widget type
left = left edge location, in pixels
top $=$ top edge location, in pixels
symbol_style = 1-41 (see Table 9-19 on page 104)
name/alias = text name or alias
data_source = 1 (scale), 2 (program), 3 (setpoint), 4
(digital I/O point)

```
data_field
    If data_source = 1, data_field is the scale channel
        number
    If data_source \(=3\), data_field is the setpoint number,
        1-100, or 0 (current setpoint)
    If data_source \(=4\), data_field is 0 (onboard I/O, bits
        1-4) or the I/O expansion card number, 1-14
data_subfield
    If data_source \(=1\), data_subfield can be:
        1 (tare)
        2 (motion)
        3 (center of zero)
        4 (overload)
        5 (underload)
    If data_source \(=3\), data_subfield can be:
        1 (setpoint state)
        2 (tolerance check)
    If data_source \(=4\), data_subfield specifies the bit
        number of the onboard or expansion card digital I/O
        channel: 1-4 (for onboard I/O, data_field=0) or 1-24
        (for expansion card I/O)
visible \(=1\) (on) or 2 (off)
screen_number = 1-10
```

Example:
WDGT\#2=6,120,120,6,Alarm, 4,12,1,1,2<CR>
creates a visible symbol widget for screen 2 , named Alarm, using the bell symbol (symbol widget number 6 in Table 9-19 on page 104), with the upper left-hand corner of the label at pixel location 120,120. The symbol toggles on or off depending on the state of bit 1 on digital I/O expansion card 12.
NOTE: For symbol widgets associated with setpoint digital outputs, the widget is set to state 1 (see Table 9-19) when the setpoint is tripped, but the state of the digital output depends on the type of setpoint.
Batch setpoints: When tripped, the associated digital output is set inactive (widget set to state 1)
Continuous setpoints: When tripped, the associated digital output is set active (widget set to state 1)

Symbol Style（x）	Description	Widget State（y）					
		$y=1$		$y=2$		$y=3$	
1	Tare	Tare	\langle	Off	［Blank］	P．Tare	－
2	Standstill	On	$\underline{4}$	Off	［Blank］		
3	COZ	On	\rightarrow［1＊	Off	［Blank］		
4	Round	Empty		Full	6		
5	Square	Empty		Full			
6	Bell	On	O	Off	［Blank］		
7	Exclamation Mark	On	＋	Off	［Blank］		
8	Light Bulb	On	θ	On／Bright	8	Off	［Blank］
9	Reject	On	業	Off	［Blank］		
10	Over／Under	＝	Z	－	－	＋	＋
11	Stop Light	Green	4	Red	4	Yellow	＋
12	Left	On	＋	Off	［Blank］		
13	Right	On	4	Off	［Blank］		
14	Up	On		Off	［Blank］		
15	Down	On		Off	［Blank］		
16	Speaker	Quiet	4	Loud	(i)	Off	［Blank］
17	Serial	Connect	蛙直	Disconnect		Off	［Blank］
18	Truck 1	On		Off	［Blank］		
19	Truck 2	On		Off	［Blank］		
20	Weight	On	品	Off	［Blank］		
21	Overload	On	\pm	Off	［Blank］		
22	Underload	On	7	Off	［Blank］		

Table 9－19．Symbol Widgets

Symbol Style（x）	Description	Widget State（y）					
		$y=1$		$y=2$		$y=3$	
23	Stop	On／Dark	3	Off	［Blank］	On／Light	s－0）
24	Yield	On	7	Off	［Blank］		
25	Skull \＆Crossbones	On	电	Off	［Blank］		
26	Unbalance	On	8	Off	［Blank］		
27	Runner	Slow	5	Fast	－4	Off	［Blank］
28	Walker	Left leg	8	Right leg	89	Off	［Blank］
29	Printer	On	焉	Off	［Blank］		
30	Hourglass	On	要	Off	［Blank］		
31	Gas Pump	On		Off	［Blank］		
32	Conveyor	Empty	）	Full	雨象象	Off	［Blank］
33	Batch	Automatic	C	Manual	A完	Off	［Blank］
34	Valve	Closed	5	Open	폽	Off	［Blank］
35	Motor	Stop		Run		Off	［Blank］
36	Checkmark	On	${ }^{\prime}$	Off	［Blank］		
37	Faucet	Closed	5	Open	镸	Off	［Blank］
38	Padlock	Locked	0	Open	:	Off	［Blank］
39	Key	On	071	Off	［Blank］		
40	Pipe	Empty	\longmapsto	Full		Off	［Blank］
41	Not	On	（3）	Off	［Blank］		

Table 9－19．Symbol Widgets（Continued）

10.0 Appendix

10.1 Troubleshooting

Table 10-1 lists general troubleshooting tips for various hardware and software error conditions. See the following pages for additional information about specific diagnostic tools. Additionally, the CPU board has diagnostic LEDs that flash when sending/receiving data, and a heartbeat LED for troubleshooting.

Symptom	Cause/Remedy
Indicator does not power up	Possible blown fuse or bad power supply. Check fuses (see Section 2.8 on page 16) and replace if necessary. Fuse specifications are listed on page 127; fuse replacement part numbers are listed in Table 2-8 on page 18. If fuses are good, check all voltages on CPU board. Power supply should output both +6 V and -6 V levels to the CPU board (see Figure 2-6 on page 12). If power supply appears bad, check the small glass fuse (2.5A, 5x20mm PN85791) on the power supply board.
Front panel power indicator blinking (i)	Power supply overloaded. Check for shorts in A/D card regulators or in the DC-to-DC converter of any installed analog output or pulse input cards.
"Blue screen"	Check LCD contrast pot (under interface board access cover; see Figure 2-3 on page 10). Possible corrupt core software; reset or reload software.
Hangs in "888" display	Corrupt core software. Reset or reload software.
Tare and truck data pointers are corrupt, Tare storage is corrupt error messages at startup	Possible dead battery. Perform configuration reset then check for low battery warning on display. If battery is low, replace battery, perform another configuration reset, then reload files.
Divide by zero error message at startup	User program error. See Section 10.1.3 on page 107
ERROR message in weight display	Excitation voltage too low or off. Excitation voltage is provided by the A/D card.
Dashes in weight display	Overrange or underrange scale condition. Check scale. For out-of -range conditions in total scale display, check all scale inputs for positive weight values.
Display reads 0.000000	Scale not updating. Check for bad option card hanging the bus.
Cannot enter setup mode	Possible bad switch. Test switch; replace interface board if necessary.
Serial port not responding	Possible configuration error. For command input, ensure port INPUT parameter is set to CMD.
A/D scale out of range	Check source scale for proper mechanical operation. Check load cell and cable connection. Possible bad load cell: check indicator operation with load cell simulator.
Locked - Scale in use	Scale is assigned as an input to a total scale or is the source for a serial scale, analog output, or setpoint. If not correct, deconfigure this scale assignment and reconfigure as required.
Serial scale out of range	Check source scale for proper mechanical operation. Check cable connection. Possible format mismatch between serial scale and $920 i$: Check SFMT specification under SERIAL menu.
Option x Error	Field bus card (Profibus, DeviceNet, or Remote I/O) in slot x failed to initialize.
Option card failure	Possible defective card or slot. Disconnect power, install card in different slot, then apply power again.
Option card hardware diagnostic error	Required option card not found. See Section 10.1.1 on page 107.
Expansion board does not power up	Check expansion board power supply.
Download error during PLOAD command	Insufficient memory for PLOAD mapping due to older CPU board. Large programs may require Rev E or later $920 i$ CPU board.

Table 10-1. Basic Troubleshooting

10.1.1 Option Card Diagnostic Errors

Option cards are detected by the $920 i$ at power-up. If the current indicator configuration requires an option card but that card is not detected at power-up, an error similar to the following is displayed:

```
HARDWARE CRITICAL TO PROPER OPERATION
    WITH CURRENT CONFIGURATION
                CANNOT BE FOUND
            A/D SLOT 4 CHANNEL }
INSTALL HARDWARE OR RECONFIGURE
```

To recover from this error you can do the following:

- If the option is required, ensure that the card is properly seated in its slot and cycle the power. If the card is still not recognized, replace the card or try installing the card in a different slot.
- Enter setup mode and reconfigure to eliminate the requirement for the option.
- Go to the VERSION menu and use the Reset Config softkey (or RESETCONFIGURATION command) to perform a configuration reset. Configuration reset returns all configuration values to their factory defaults.
See Section 10.1.2 below, for information about using the HARDWARE serial command to verify that installed cards are recognized.

10.1.2 Using the HARDWARE Command

The HARDWARE serial command can be issued to verify that all installed cards are recognized by the system. The HARDWARE command returns a string of card type codes, representing cards installed in slots 1-14:

HARDWARE $=3,3,2,4,5,0,0,0,0,0,0,0,0,0$

Table 10-2 lists the card codes returned by the HARDWARE command.

Code	Card Type
0	No card installed
1	Dual-Channel Serial Expansion Card
2	Dual-Channel A/D Card
3	Single-Channel A/D Card
4	Single-Channel Analog Output Card
5	24-Channel Digital I/O Expansion Card
6	Pulse Input Card
7	1 MB Memory Expansion Card
9	DeviceNet Card
10	Profibus Card
11	EtherNet/IP Card
12	Remote I/O Card
14	Custom Card
15	Analog Input Card
16	ControlNet Card
17	Dual-Channel Analog Output Card
NOTE: Code 11 is returned only by the EtherNet/IP card. The standard $10 M / 100 M b p s ~ E t h e r n e t ~ c a r d ~ d o e s ~ n o t ~ r e t u r n ~$ a card type code. Any slot containing a standard Ethernet card will return a value of O on the HARDWARE command.	

Table 10-2. HARDWARE Command Option Card Codes
If an installed card is not recognized (HARDWARE command returns a code of 0 for that slot), ensure that the card is seated properly. Reinstall the card, if necessary, then cycle the indicator power to read the configuration again. If the card is still not recognized, try installing it in another slot.

10.1.3 User Program Diagnostic Errors

Faulty user programs can cause critical errors that are detected by the $920 i$ at power-up. The following error message is caused by a user program attempting to divide by zero:

```
A CRITICAL USER PROGRAM ERROR HAS BEEN DETECTED
```

DIVIDE BY ZERO
SYSTEM RESET IS REQUIRED
To recover from this error you can do the following:

- Cycle the indicator power to reset the user program.
- Correct the iRite program to eliminate the divide by zero operation. Recompile the program, then download the corrected program to the indicator.
If technical assistance is required, contact RLWS technical support.

Diagnostic Boot Procedure

If a user program causes an error in the start-up handler, press and hold the setup switch while cycling power to the $920 i$ to place the indicator in setup mode. Use iRev 4 monitor mode to send the PCLR command erase clear the user program.
If the error is still not cleared, perform the following diagnostic boot procedure.

1. Disconnect power to the 920 i.
2. Connect the serial port of a PC with iRev 4 installed to port 2 of the 920i. Connection must be made at 38400 bps .
3. Open the indicator enclosure and place a jumper across the SW1 boot mode pins (see Figure 2-6 on page 12).
4. Power up the $920 i$. The indicator will stall at the diagnostic monitor.
5. Start iRev 4 and enter monitor mode, then type B00T.
6. Use the indicator setup switch to enter setup mode.
7. Remove the jumper from SW1.
8. From monitor mode, enter the RESETCONFIGURATION command.
Determine the cause of the startup handler error, make program corrections, then reload the corrected user program and test.

10.1.4 Using the XE Serial Command

The XE serial command can be used to remotely query the $920 i$ for the error conditions shown on the front panel. The XE command returns a decimal number representing any existing error conditions. For multi-scale applications, the value returned by the XE command represents all error conditions, if any, present on all configured scales.
If more than one error condition exists, the number returned is the sum of the values representing the error conditions (see Table 10-3 on page 108). For example, if both a tare error (TAREERR, 65536) and a truck database checksum error (ETRUCKERR, 8192) have occurred, the XE command returns the value 73728, representing the sum of those two error conditions.

Error Code	Value	Description
VIRGERR	1	Virgin error
PARMCHKERR	2	Configuration checksum error
LOADCHKERR	4	Calibration checksum error
PRINTCHKERR	8	Print format checksum error
ENVRAMERR	16	General NVRAM error
ENVCRC1ERR	32	Setpoint NVRAM data error
ENVCRC2ERR	64	
ENVCRC3ERR	128	
ENVCRC4ERR	256	
ENVCRC5ERR	512	
ENVCRC6ERR	1024	
ENVCRC7ERR	2056	
ENVCRC8ERR	4096	
ENVCRC9ERR	8192	Audit trail error
ETRUCKERR	16384	Truck database checksum error
GRAVERR	32768	Gravity calibration error
-	65536	Reserved
TAREERR	131022	Tare checksum error
EACCOVER	262144	Accumulator overflow error
STRINGERR	524288	String program error
-	1048576	Reserved
RTCERR	2097152	Real time clock error

Table 10-3. Error Codes Returned on XE Command

10.2 Regulatory Mode Functions

The function of the front panel TARE and ZERO keys depends on the value specified for the REGULAT parameter on the FEATURE menu. Table 10-4 describes the function of these keys for the NTEP, CANADA, OIML, and NONE regulatory modes. TARE and ZERO key functions are configurable when the REGULAT mode is set to INDUST (see Table 10-5 on page 109).

REGULAT Parameter Value	Weight on Scale	Tare in System	Front Panel Key Function	
			TARE	ZERO
NTEP	zero or negative	no	no action	ZERO
		yes	CLEAR TARE	
	positive	no	TARE	
		yes	TARE	
CANADA	zero or negative	no	no action	ZERO
		yes	CLEAR TARE	
	positive	no	TARE	
		yes	no action	
OIML	zero or negative	no	no action	ZERO
		yes	CLEAR TARE	ZERO and CLEAR TARE
	positive	no	TARE	ZERO
		yes	TARE	ZERO and CLEAR TARE if weight is within ZRANGE. No action if weight is outside of ZRANGE
NONE	zero or negative	no	TARE	ZERO
		yes	CLEAR TARE	
	positive	no	TARE	
		yes	CLEAR TARE	

Table 10-4. TARE and ZERO Key Functions for REGULAT Parameter Settings

Table 10-5 lists the subparameters available when configuring a scale using INDUST mode. The table includes the default values of the INDUST subparameters and the effective (not configurable) values used by the NTEP, CANADA, OIML, and NONE regulatory modes.

REGULAT / INDUST Parameter		REGULAT Mode				
Parameter Name	Text Prompt	INDUST	NTEP	CANADA	OIML	NONE
SNPSHOT	Display or Scale weight source	DISPLAY	DISPLAY	DISPLAY	DISPLAY	SCALE
HTARE	Allow tare in display hold	NO	NO	NO	NO	YES
ZTARE	Remove tare on ZERO	NO	NO	NO	YES	NO
KTARE	Always allow keyed tare	YES	YES	NO	YES	YES
MTARE	Multiple tare action	REPLACE	REPLACE	NOTHING	REPLACE	REMOVE
NTARE	Allow negative tare	NO	NO	NO	NO	YES
CTARE	Allow CLEAR key to clear tare/accumulator	YES	YES	NO	NO	YES
CHILDZT	Clear child scales individually	NO	NO	NO	NO	NO

Table 10-5. REGULAT / INDUST Mode Parameters, Comparison with Effective Values of Other Modes

REGULAT / INDUST Parameter		REGULAT Mode				
Parameter Name	Text Prompt	INDUST	NTEP	CANADA	OIML	NONE
NEGTOTAL	Allow total scale to display negative value	NO	NO	NO	NO	NO
PRTMOT	Allow print while in motion	NO	NO	NO	NO	YES
PRTPT	Add PT to keyed tare print	NO	NO	YES	YES	NO
PRTHLD	Print during display hold	NO	NO	NO	NO	YES
HLDWGH	Allow weigh during display hold	NO	NO	NO	NO	YES
MOTWGH	Allow weighment in motion	NO	NO	NO	NO	NO
OVRBASE	Zero base for overload calculation	CALIB	CALIB	CALIB	SCALE	CALIB

Table 10-5. REGULAT / INDUST Mode Parameters, Comparison with Effective Values of Other Modes (Continued)

10.3 PS/2 Keyboard Interiace

Serial port 2 on the $920 i$ CPU board provides a PS/2-type keyboard interface for use with a remote keyboard. To use the keyboard interface, set the INPUT parameter for Port 2 (under the SERIAL menu) to KEYBD.
Table 10-6 summarizes the $920 i$-specific functions provided by the keyboard interface; most other alphanumeric and navigational keys provide functions equivalent to those typical for PC operation. Menu parameters and serial commands that affect indicator keypad operation (including the KBDLCK, ZERONLY, and KLOCK serial commands) also affect the remote keyboard.

NOTES:

- The keyboard interface is not hot-pluggable. Disconnect power to the $920 i$ before plugging the keyboard cable into the Port 2 connector.
- The 920i supports keyboard scan codes 1, 2, and 3.

Key	Function
F1	Softkey 1
F2	Softkey 2
F3	Softkey 3
F4	Softkey 4
F5	Softkey 5
F6 (Alt+Z)	ZERO key
F7 (Alt+G)	GROSS/NET key
F8 (Alt+T)	TARE key
F9 (Alt+U)	UNITS key
F10 (Alt+P)	PRINT key
F11	Not used
F12	Same as PRINT key, in both normal and setup modes

Table 10-6. PS/2 Keyboard Functions

10.4 Serial Scale Interface

Serial ports 3 through 32 can be configured for serial scale input. The serial scale function allows other scale indicators to send gross, net, or tare weight data to the $920 i$. Once a serial port has been configured to accept scale data, the data format can be customized to match the data stream sent by that indicator.
To configure a serial scale, do the following:

1. Under the SERIAL menu, set the INPUT parameter for the selected port to SCALE (legal-for-trade serial scale) or INDUST (industrial serial scale).
2. Return to the SCALES menu. Under CONFIG, drop down and select the serial port. If the serial scale is not shown, press the Change Type softkey to select available serial scales, then use the navigational keys to select the serial scale. Press Add to move the scale to the righthand column, the press Done.
3. Under the SERIAL menu, return to the selected port and set the format under the SFMT parameter to match the format sent by the serial scale.
The default serial scale format is:
```
<2><P><W7.><U><M><S><CR><LF>
```

where:

<2>	STX character
<P>	Polarity
<W7.>	Seven characters of net data with decimal point
<M>	Mode
<U>	Units
<S>	Status
<CR>	Carriage return
<LF>	Line feed

NOTE: Industrial serial scales (INDUST) do not require the <M>, <U $>$, and <S> identifiers. However, the units and number of decimal places must be specified. Units can be selected from the FORMAT menu; decimal places should be indicated on the w-spec identifier. For example, a seven-digit weight requiring two decimal places should be specified as <W7.2> rather than <W7.>.
See Section 10.6 for more information about stream formatting and format identifiers.
iRev 4 provides several preset scale formats within its Stream Formatting function. Figure 10-1 shows one of the iRev 4 stream formatting displays.

Figure 10-1. iRev 4 Stream Formatting Display

10.5 Local/Remote Operation

For truck scale and similar applications, local/remote support provides function equivalent to that of a legal-for-trade remote display with keypad. Scale data from the local indicator is also displayed at the remote unit, and keypad input from the remote allows transactions to be initiated from either the local or remote unit.
To configure for local/remote operation, first set up the local scale (including softkey assignments, truck mode, and database information, as required). Use the SERIAL menu, serial commands, or iRev 4 to set the Local Unit serial parameters shown in Table 10-7. Configure the remote indicator using the serial parameters listed for the Remote Unit.

Serial 	Parameter Value	
	Local Unit	Remote Unit
EDP.INPUT\#p	CMD	DISPLAY
EDP.STREAM\#p	DISPLAY	KEYPAD
EDP.BAUD\#p	115200 preferred; local and remote values must match	
EDP.ECHO\#p	OFF	OFF
EDP.RESPONSE\#p	ON	ON
In the listed serial commands, p represents the serial port number.		

Table 10-7. Local/Remote Configuration Parameters

10.6 Custom Stream Formatting

Each port can be independently configured to stream a default frame format or can be customized to stream a user-defined format. Custom formatting is very similar to the standard print formatting described in Section 6.0.
Table 10-8 on page 112 lists the format identifiers used to configure a custom stream format. See Section 10.7 on page 115 for examples of custom stream formats.

Format Identifier	Defined By	Description	
<P[G\|N	T]>	STR.POS\#n STR.NEG\#n	Polarity. Specifies positive or negative polarity for the current or specified (Gross/Net/Tare) weight on the source scale. Possible values are SPACE, NONE, + (for STR.POS\#n), or - (for STR.NEG\#n)
$<U[P\|S\| T]>$	STR.PRI\#n STR.SEC\#n STR.TER\#n	Units. Specifies primary, secondary, or tertiary units for the current or specified weight on the source scale.	
<M[G\|N	T]>	STR.GROSS\#n STR.NET\#n STR.TARE\#n	Mode. Specifies gross, net, or tare weight for the current or specified weight on the source scale.
<S>	STR.MOTION\#n STR.RANGE\#n STR.OK\#n STR.INVALID\#n STR.ZERO\#n	Status for the source scale. Default values and meanings for each status:	
<B [-]n,...>	See descriptions below	Bit fields. Comma-separated sequence of bit field specifiers. Must be exactly 8 bits. Minus sign ([-]) inverts the bit.	
B0	-	Always 0	
B1	-	Always 1	
B2	Configuration	$=1$ if even parity	
B3	Dynamic	=1 if MODE=NET	
B4	Dynamic	= 1 if COZ	
B5	Dynamic	=1 if standstill	
B6	Dynamic	=1 if gross negative	
B7	Dynamic	=1 if out of range	
B8	Dynamic	=1 if secondary/tertiary	
B9	Dynamic	$=1$ if tare in system	
B10	Dynamic	$=1$ if tare is keyed	
B11	Dynamic	$\begin{aligned} & =00 \text { if MODE=GROSS } \\ & =01 \text { if MODE=NET } \\ & =10 \text { if MODE=TARE } \\ & =11 \text { (not used) } \end{aligned}$	
B12	Dynamic	$\begin{aligned} & =00 \text { if UNITS=PRIMARY } \\ & =01 \text { if UNITS=SECONDARY } \\ & =10 \text { if UNITS=TERTIARY } \\ & =11 \text { (not used) } \end{aligned}$	
B13	Configuration	$\begin{aligned} & =00 \text { (not used) } \\ & =01 \text { if current DSPDIV=1 } \\ & =10 \text { if current DSPDIV=2 } \\ & =11 \text { if current DSPDIV=5 } \end{aligned}$	

Table 10-8. Custom Stream Format Identifiers

Format Identifier	Defined By	Description
B14	Configuration	$\begin{aligned} & =00 \text { (not used) } \\ & =01 \text { if primary DSPDIV=1 } \\ & =10 \text { if primary DSPDIV=2 } \\ & =11 \text { if primary DSPDIV=5 } \end{aligned}$
B15	Configuration	$\begin{aligned} & =00 \text { (not used) } \\ & =01 \text { if secondary DSPDIV=1 } \\ & =10 \text { if secondary DSPDIV=2 } \\ & =11 \text { if secondary DSPDIV=5 } \end{aligned}$
B16	Configuration	$\begin{aligned} & =00 \text { (not used) } \\ & =01 \text { if tertiary DSPDIV=1 } \\ & =10 \text { if tertiary DSPDIV=2 } \\ & =11 \text { if tertiary DSPDIV=5 } \end{aligned}$
B17	Configuration	$\begin{aligned} & =000 \text { if current DECPNT=8888800 } \\ & =001 \text { if current DECPNT }=8888880 \\ & =010 \text { if current DECPNT }=8888888 \\ & =011 \text { if current DECPNT }=888888.8 \\ & =100 \text { if current DECPNT }=88888.88 \\ & =101 \text { if current DECPNT }=8888.888 \\ & =110 \text { if current DECPNT }=888.8888 \\ & =111 \text { if current DECPNT }=88.88888 \end{aligned}$
B18	Configuration	$\begin{aligned} & =000 \text { if primary DECPNT }=8888800 \\ & =001 \text { if primary DECPNT }=8888880 \\ & =010 \text { if primary DECPNT }=8888888 \\ & =011 \text { if primary DECPNT }=888888.8 \\ & =100 \text { if primary DECPNT }=88888.88 \\ & =101 \text { if primary DECPNT }=8888.888 \\ & =110 \text { if primary DECPNT }=888.8888 \\ & =111 \text { if primary DECPNT=88.88888 } \end{aligned}$
B19	Configuration	$\begin{aligned} & =000 \text { if secondary DECPNT=8888800 } \\ & =001 \text { if secondary DECPNT=8888880 } \\ & =010 \text { if secondary DECPNT=8888888 } \\ & =011 \text { if secondary DECPNT }=888888.8 \\ & =100 \text { if secondary DECPNT=88888.88 } \\ & =101 \text { if secondary DECPNT=8888.888 } \\ & =110 \text { if secondary DECPNT }=888.8888 \\ & =111 \text { if secondary DECPNT=88.88888 } \end{aligned}$
B20	Configuration	$\begin{aligned} & =000 \text { if tertiary DECPNT }=8888800 \\ & =001 \text { if tertiary DECPNT }=8888880 \\ & =010 \text { if tertiary DECPNT }=8888888 \\ & =011 \text { if tertiary DECPNT }=888888.8 \\ & =100 \text { if tertiary DECPNT }=88888.88 \\ & =101 \text { if tertiary DECPNT }=8888.888 \\ & =110 \text { if tertiary DECPNT }=888.8888 \\ & =111 \text { if tertiary DECPNT }=88.88888 \end{aligned}$

Table 10-8. Custom Stream Format Identifiers

Format Identifier	Defined By	Description
<wspec [-] [0] digit[[.]digit]>	Scale weight	Weight for the source scale. wspec is defined as follows: wspec Indicates whether the weight is the current displayed weight (W, w), gross (G, g), net (N, n), or tare (T, t) weight. Upper-case letters specify right-justified weights; lower-case are left-justified. Optional /P, /S, or /T suffixes can be added before the ending delimiter ($>$) to specify weight display in primary (/P), secondary (/S), or tertiary (/T) units. [-] Enter a minus sign (-) to include sign for negative values. [0] Enter a zero (0) to display leading zeroes. digit[[.][].]digit] The first digit indicates the field width in characters. Decimal point only indicates floating decimal; decimal point with following digit indicates fixed decimal with n digits to the right of the decimal. Two consecutive decimals send the decimal point even if it falls at the end of the transmitted weight field.
<CR>	-	Carriage return
<LF>	-	Line feed

Table 10-8. Custom Stream Format Identifiers

10.7 Stream Formatting Examples

10.7.1 Toledo 8142 Indicator

Sample string for Toledo 8142 indicator (with no checksum):
<STX><Status Word A><Status Word B><Status Word C><wwwwww><tttttt><EOL>
String recognized by the $920 i$:
$<02><B 2, B 0, B 1, B 13, B 17><B 2, B 0, B 1, B 8, B 5, B 7, B 6, B 3><B 2, B 0, B 1, B 0, B 0, B 0, B 0, B 0><W 06><T 06><C R>$

Identifier	920i Stream Format
<STX>	The STX character is entered into the string using the $<02>$ hex value.
<Status Word A>	Toledo status words are made up of various bit fields which are replaced by the $920 i$ format identifiers listed in Table 10-8 on page 112. NOTE: Identifiers must be entered beginning with the high-order bit (bit 7-bit0) of the Toledo status word. Status Word A contains the following fields. Equivalent $920 i$ format identifiers are shown in parentheses. Bit 7: parity ($920 i$ bit field B2) Bit 6: always 0 (B0) Bit 5: always 1 (B1) Bits 3-4: display divisions (B13) Bits 0-2: decimal format (B17)
<Status Word B>	Status Word B contains the following fields. Equivalent $920 i$ format identifiers are shown in parentheses. Bit 7: parity ($920 i$ bit field B 2) Bit 6: always 0 (B0) Bit 5: always 1 (B1) Bit 4: lb/kg units (B8) Bit 3: stable/motion (B5) Bit 2: in/out-of-range (B7) Bit 1: pos/neg (B6) Bit 0: gross/net (B3)
<Status Word C>	Status Word C contains the following fields. Equivalent $920 i$ format identifiers are shown in parentheses. Bit 7: parity ($920 i$ bit field B 2) Bit 6: always 0 (B0) Bit 5: always 1 (B1) Bits 0-4: always $0(\mathrm{BO})$
<wwwwww>	The <W06> and <T06> indicate six digits of indicated weight and tare weight with leading zeroes. Valid characters are $\mathrm{W}, \mathrm{w}, \mathrm{G}, \mathrm{g}, \mathrm{T}, \mathrm{t}, \mathrm{N}$, or n (lower case indicates left justified). W indicates current weight, G-gross weight, N-net weight, T-tare weight. /P, /S, and /T can be used to specify primary, secondary, or tertiary units. Minus (-) indicates sign inclusion; (0) indicates leading zeros. First digit indicates field width in characters; a decimal point (.) indicates floating decimal point. A decimal with subsequent digit indicates fixed decimal with n digits to the right of the decimal. Two consecutive decimals (for example, <W06..>) send the decimal point even if it falls at the end of the transmitted weight field.
<tttttt>	Tare weight. See description above.
<EOL>	$<\mathrm{CR}>$ is entered at the end of the string as the end of line character in this example.

Table 10-9. Toledo Sample String Identifiers

10.7.2 Cardinal 738 Indicator

Sample string for the Cardinal 738 indicator:
<CR><POL><wwwwww><S><SP><units><SP><G/N><SP><SP><EOL>
String recognized by the 920 i:
<CR><P><W06..><S><SP><U><SP><M><SP2><03>

Identifier	$920 i$ Stream Format
<CR>	Carriage Return
<POL>	Cardinal uses + for positive and - for negative, so the stream polarity tokens need to reflect this. The serial commands for the $920 i$ are STR.POS\#p=+ and STR.NEG\#p=-.
<wwwwww>	The <W06..> identifier that the $920 i$ recognizes indicates six digits of weight with a decimal and leading zeroes, with the decimal sent at the end of the weight. Valid characters are W, w, G, g, T, t, N, or n (lower case indicates left justified). W indicates current weight, G-gross weight, N-net weight, T-tare weight. /P, $/ S$, and $/ T$ can be used to specify primary, secondary, or tertiary units. Minus (-) indicates sign inclusion; (0) indicates leading zeros. First digit indicates field width in characters; a decimal point (.) indicates floating decimal point. A decimal with subsequent digit indicates fixed decimal with n digits to the right of the decimal. Two consecutive decimals (for example, <W06..>) send the decimal point even if it falls at the end of the transmitted weight field.
<S>	There are four possible tokens for status bits that can be used: motion, out-of-range, valid, and invalid. In the Cardinal, m indicates motion, o indicates out-of-range; a space is used for valid or invalid weights. The commands to set these tokens in the $920 i$ are STR.MOTION\#p=m, STR.RANGE\#p=0, STR.OK\#p=, STR.INVALID\#p = . NOTE: A space must be entered following the equals sign on the OK and INVALID serial commands.
<SP>	Space
<units>	The Cardinal uses two-character, lower-case units identifiers. The commands to set these tokens in the $920 i$ include: STR.PRI\#p=lb (options: kg, g, tn, t , gr, oz, or sp), STR.SEC\#p=kg and STR.TER\#p=kg (options: lb, g, tn, t, gr, oz, or sp).
<SP>	Space
<g/n>	The mode used for Cardinal is g for gross and n for net. These tokens are set using the STR.GROSS\# $\mathrm{p}=\mathrm{g}$ and STR.NET\#p=n tokens.
<SP>	Space
<SP>	Space
<EOL>	The end of line character is an ETX in this example, so the hex value of <03> is entered in the string.

Table 10-10. Cardinal Sample String Identifiers

10.7.3 Weightronix WI -120 Indicator

Sample string for the Weightronix WI-120 indicator:
<SP><G/N><POL><wwwwww><SP><units><EOL>
String recognized by the 920i:
<SP><M><P><W06.><SP><U><CR><LF>

Identifier	920i Stream Format
<SP>	Space
<G/N>	The mode used for Weightronix is G for gross and N for net. These tokens are set using the STR.GROSS\#p=G and STR.NET\#p=N tokens.
<POL>	Since the Weightronix uses + for positive and - for negative, the polarity tokens need to reflect this. The serial commands for the $920 i$ are STR.POS\#p $=+$ and STR.NEG\#p= - .
<wwwwww>	The <W06.> that the $920 i$ recognizes indicates six digits of weight with a decimal and leading zeroes. Valid characters are W, w, G, g, T, t, N, or n (lower case indicates left justified). W indicates current weight, G-gross weight, N-net weight, T-tare weight. /P, /S, and /T can be used to specify primary, secondary, or tertiary units. Minus (-) indicates sign inclusion; (0) indicates leading zeros. First digit indicates field width in characters; a decimal point (.) indicates floating decimal point. A decimal with subsequent digit indicates fixed decimal with n digits to the right of the decimal. Two consecutive decimals (for example, <W06..>) send the decimal point even if it falls at the end of the transmitted weight field.
<SP>	Space
<units>	The Weightronix uses two-character, lower-case units identifiers. The commands to set these tokens in the $920 i$ include: STR.PRI\#p=lb (options: kg, g, tn, t, gr, oz, or sp), STR.SEC\#p=kg (options: lb, g, tn, t, gr, oz , or sp).
<EOL>	<CR> or <CR> and <LF>

Table 10-11. Weightronix Sample String Identifiers

10.8 Data Formats

Continuous Output Serial Data Format

If continuous transmission is configured for a serial port (STREAM parameter set to LFT or INDUST on the SERIAL menu), the $920 i$ sends data using the Consolidated Controls serial data format shown in Figure 10-2:

Figure 10-2. Continuous Output Serial Data Format

Demand Output Serial Data Format

When demand mode is configured for the serial port (STREAM parameter set to OFF), the $920 i$ uses a data string formatted for a basic ticket printout. The particular ticket format printed depends on the indicator configuration.

You can customize the ticket to work with a wide variety of printers, scoreboard displays, and other remote equipment. See Section 6.0 on page 62 for more information on custom print formats.

RS-485 Data Formats

Two-wire RS-485 communications is available on port 4 of the CPU board; four-wire RS-485 communications is supported on the "A" ports of any installed serial expansion cards.
The $920 i$ has a built-in RS-485 software protocol which is enabled when you assign a non-zero address to the indicator. Valid RS-485 addresses must be in the range $1-255$; the address is specified on the ADDRESS parameter on the SERIAL menu.
All remote commands are initiated using the data format shown in Figure 10-3:

Figure 10-3. RS-485 Send Data Format

If the initiating device address matches the port address of an $920 i$ on the RS-485 network, that indicator responds. For example, with demand outputs, or in response to an XG\#1 command, the responding indicator uses the format shown in Figure 10-4:

Figure 10-4. RS-485 Respond Data Format
Example: To send the XG\#1 command from an ASCII terminal to an indicator at address 65 (decimal) on the RS-485 network, use the format shown in Figure 10-3.

- The keyboard equivalent for the start-of-text (STX) character is CONTROL-B.
- The indicator address (65) is represented by an upper case "A".
- The carriage return (CR) character is generated by pressing the ENTER key.
Therefore, to send the XG\#1 command to the indicator at address 65, enter the following at the terminal: <CONTROL-B>AXG\#1.
The indicator responds with the format shown in Figure 10-4:
1234.00 lb

10.9 Digital Filtering

Standard digital filtering uses mathematical averaging to eliminate the variant digital readings that the A/D converter sends periodically because of external vibration. Digital filtering does not affect the indicator measurement rate, but does affect the settling time. The selections from 1 to 256 reflect the number of readings averaged per update period. When a reading is encountered that is outside a predetermined band, the averaging is overridden, and the display jumps directly to the new value.

DIGFLTx Parameters

The first three digital filtering parameters, DIGFLT1, DIGFLT2, and DIGFLT3, are configurable filter stages that control the effect of a single A/D reading on the displayed weight. The value assigned to each parameter sets the number of readings received from the preceding filter stage before averaging.
A rolling average is passed to successive filters for an overall filtering effect that is effectively a weighted average of the product of the values assigned to the filter stages (D/GFLT1 \times DIGFLT2 \times D/GFLT3) within a time frame corresponding to the sum of the values (D/GFLT1 + DIGFLT2 + DIGFLT3).
Setting the filters to 1 effectively disables digital filtering.

RATTLETRAP ${ }^{\circledR}$ Filtering

RATTLETRAP digital filtering (RATTRAP parameter set ON) uses a vibration-dampening algorithm to provide a combination of the best features of analog and digital filtering. The RATTLETRAP algorithm evaluates the frequency of a repeating vibration then derives a composite displayed weight equal to the actual weight on the scale less the vibration-induced flaws. It is particularly effective for eliminating vibration effects or mechanical interference from nearby machinery. Using RATTLETRAP filtering can eliminate much more mechanical vibration than standard digital filtering, but will usually increase settling time over standard digital filtering.

DFSENS and DFTHRH Parameters

The digital filter can be used by itself to eliminate vibration effects, but heavy filtering also increases settling time. The DFSENS (digital filter sensitivity) and DFTHRH (digital filter threshold) parameters can be used to temporarily override filter averaging and improve settling time:

- DFSENS specifies the number of consecutive scale readings that must fall outside the filter threshold (DFTHRH) before digital filtering is suspended.
- DFTHRH sets a threshold value, in display divisions. When a specified number of consecutive scale readings (DFSENS) fall outside of this threshold, digital filtering is suspended. Set DFTHRH to NONE to turn off the filter override.

Setting the Digital Filter Parameters

Fine-tuning the digital filter parameters greatly improves indicator performance in heavy-vibration environments. Use the following procedure to determine vibration effects on the scale and optimize the digital filtering configuration.

1. In setup mode, set the digital filter parameters (DIGFLT1-DIGFLT3) to 1 . Set DFTHRH to NONE. Return indicator to normal mode.
2. Remove all weight from the scale, then watch the indicator display to determine the magnitude of vibration effects on the scale. Record the weight below which all but a few readings fall. This value is used to calculate the DFTHRH parameter value in Step 4.
For example, if a heavy-capacity scale (10000 $x 5 \mathrm{lb}$) produces vibration-related readings of up to 50 lb , with occasional spikes to 75 lb , record 50 lb as the threshold weight value.
3. Place the indicator in setup mode and set the DIGFLTx parameters to eliminate the vibration effects on the scale. (Leave DFTHRH set to NONE.) Find the lowest effective value for the DIGFLTx parameters.
4. Calculate the DFTHRH parameter value by converting the weight value recorded in Step 2 to display divisions:

threshold_weight_value / display_divisions

In the example in Step 2, with a threshold weight value of 50 lb and a display divisions value of 5 lb : $50 / 5=10$. DFTHRH should be set to 10D for this example.
5. Finally, set the DFSENS parameter high enough to ignore transient peaks. Longer transients (typically caused by lower vibration frequencies) will cause more consecutive out-of-band readings, so DFSENS should be set higher to counter low frequency transients. Reconfigure as necessary to find the lowest effective value for the DFSENS parameter.

10.10 Conversion Factors for Secondary Units

The $920 i$ has the capability to mathematically convert a weight into many different types of units and instantly display those results with a press of the UNITS key.
Secondary and tertiary units can be specified on the FORMAT menu using the SECNDR and TERTIA parameters, or by using serial commands.

- To configure secondary or tertiary units using the front panel menus, use the Table 10-12 to find the conversion multiplier for the MULT parameter. For example, if the primary unit is pounds and the secondary unit is short tons, set the MULT parameter to 0.000500 .
- To configure secondary or tertiary units using serial commands, use the Table 10-12 to find the conversion multiplier for the SC.SEC.MULT or SC.TER.MULT command. For example, if the primary unit is pounds and the secondary unit is short tons, send the serial command SC.SEC.MULT= $0.0005<C R>$ to set the multiplier for the secondary units.
NOTE: Ensure that the secondary decimal point position is set appropriately for the scale capacity in the secondary units. If the converted value requires more digits than are available, the indicator displays an overflow message (OVERFL).
For example, if the primary units are short tons, secondary units are pounds, and the secondary decimal point is set to 8888.888 , the indicator will overflow if 5 tons or more are applied to the scale. With 5 tons applied, and a conversion factor of 2000, the secondary units display needs five digits to the left of the decimal point to display the 10000 lb secondary units value.

Primary Unit	x Multiplier	Secondary/ Tertiary Unit
grains	0.064799	grams
	0.002286	ounces
	0.000143	pounds
	0.000065	kilograms
	0.002083	troy ounces
ounces	0.000174	troy pounds
	437.500	grains
	28.3495	grams
	0.06250	pounds
pounds	0.02835	kilograms
	0.911458	troy ounces
	0.075955	troy pounds
	7000.00	grains
	453.592	grams
	16.0000	ounces
	0.453592	kilograms
	14.58333	troy ounces
	1.215278	troy pounds
	0.000500	short tons
	0.000446	long tons
	0.000453	metric tons

Table 10-12. Conversion Factors

Primary Unit	x Multiplier	Secondary/ Tertiary Unit
	15.4324	grains
	0.035274	ounces
	0.002205	pounds
	0.001000	kilograms
	0.032151	troy ounces
	0.002679	troy pounds
	15432.4	grains
	35.2740	ounces
	1000.00	grams
	2.20462	pounds
	32.15075	troy ounces
	2.679229	troy pounds
short tons	0.001102	short tons
	0.000984	long tons
	0.001000	metric tons
metric tons	2000.00	pounds
	907.185	kilograms
	0.892857	long tons
	0.907185	metric tons
	2204.62	pounds
1000.00	kilograms	
	1.10231	short tons

Table 10-12. Conversion Factors (Continued)

Primary Unit	x Multiplier	Secondary/ Tertiary Unit
long tons	2240.00	pounds
	1016.05	kilograms
	1.12000	short tons
	1.01605	metric tons
troy ounces	480	grains
	31.10348	grams
	0.031103	kilograms
	1.09714	ounces
	0.068571	pounds
	0.083333	troy pounds
troy pounds	5760	grains
	373.2417	grams
	0.373242	kilograms
	13.16571	ounces
	0.822857	pounds
	12	troy ounces

Table 10-12. Conversion Factors (Continued)

10.11 Audit Trail Support

Audit trail support provides tracking information for configuration and calibration events. A separate calibration counter is provided for each scale; a single configuration counter tracks all configuration changes.
To prevent potential misuse, unsaved configuration or calibration changes are counted as change events; restoration of the previous saved configuration or calibration is also counted.
For NTEP and Measure Canada modes, there are twonumbers displayed; Configs and Calibs. The Configsnumber tracks changes to the legally relevantconfiguration parameter changes. The Calibs numbertracks changes to the scale calibration.
In OIML mode, there is only one number displayed;Audit Trail. The Audit trail number is incremented forany legally relevant configuration parameter changesand all calibration changes. The last date the scale wascalibrated is also displayed.

10.11.1 Displaying Audit Trail Information

To display audit trail information, press and hold the Gross/Net key for several seconds. Various audit trail information screens can then be accessed by pressing the front panel number keys (1-5 and 0). The exact format of each screen depends on the regulatory agency specified for the REGULAT (FEATURE menu) parameter.
The initial screen shown when entering the audit trail display (or whenever the 1 key is pressed while showing audit trail information) shows the legally relevant (LR) version number (software version for the code that provides audit trail information), a calibration count and, if REGULAT=NTEP, a configuration count.
Press 2 to show the configuration count display. This display shows the number of times the system has been configured, the date and time of the last configuration event, and the before/after information for the most recent change of date and time.
Press the Down key to show the number of weighments, number of configuration events, number of calibrations, and the date and time of the most recent calibration for the first configured scale. Continue pressing the Down key to cycle through the information for all configured scales.
Press 3 to show the number and the most recent date and time of power-on events, power-on configuration changes, and user program loads.
Use the Down key to show the number of power-on calibration events for all configured scales.
Press 4 to show the number of times the OEM version number has been changed, and the date and time of the most recent change.
Press 5 to show the number of times the configuration has been reset, the date and time of the most recent reset, and the indicator EIN number.
Press 0 to show the indicator and LR software versions.
When done, press the Gross/Net key to exit the audit trail displays.

10.11.2 Printing Audit Trail Information

Audit trail information can be printed by pressing the PRINT key while displaying the audit trail or by sending the DUMPAUDIT serial command. Audit trail information is sent to the port specified on the AUD.PORT serial command or by the AUDFMT parameter (PFORMT menu).
NOTE: Printed audit trail information contains data for all scales, whether configured or not, that can be supported by the indicator. Displayed audit trail information shows data only for currently configured scales.

10.12 Dimension Drawings

Figure 10-5. Universal Model Dimensions

Figure 10-6. Deep Enclosure Model Dimensions

Figure 10-7. Panel Mount Model Dimensions

Figure 10-8. Wall Mount Model Dimensions

10.13 Printed Information

System Manuals

- 920i Installation Manual, PN 67887
- iRite $^{\text {TM }}$ Programming Reference, PN 67888

Enclosures

- 920i Panel Mount Installation Instructions, PN 69989
- $920 i$ Wall Mount Installation Instructions, PN 69988
- 920i Deep Enclosure Installation Instructions, PN 83810

Expansion Boards

- Two-Card Expansion Board Installation Instructions, PN 71284
- Six-Card Expansion Board Installation Instructions, PN 71285

Option Cards

- $920 i$ Analog Output Card Installation Instructions, PN 69089
- 920i Single-Channel A/D Card Installation Instructions, PN 69092
- 920i Dual-Channel A/D Card Installation Instructions, PN 69090
- 920i 24-Channel Digital I/O Expansion Card Installation Instructions, PN 69087
- 920i Dual-Channel Serial Expansion Card Installation Instructions, PN 69088
- 920i Pulse Input Card Installation Instructions, PN 69086
- 920i Memory Expansion Card Installation Instructions, PN 69085
- 920i Analog Input Card with Thermocouple Input Installation Instructions, PN 88110

Communications Options (520/920i)

- DeviceNet ${ }^{\text {TM }}$ Interface Installation and Programming Manual, PN 69949
- Profibus ${ }^{\circledR}$ DP Interface Installation and Programming Manual, PN 69948
- Allen-Bradley ${ }^{\text {® }}$ Remote I/O Interface Installation and Programming Manual, PN 69950
- Ethernet Communications Card Installation Instructions, PN 72117
- EtherNet/IP ${ }^{\text {TM }}$ Interface Installation and Programming Manual, PN 88537
- ControlNet ${ }^{\text {TM }}$ Interface Installation and Programming Manual, PN 103122
iQUBE ${ }^{2}$ Digital Diagnostic Junction Box
- $i^{2} U B E^{2}$ Installation Manual, PN 106113

White Papers

- Using Ferrite Cores to Suppress Electromagnetic Interference - For Digital Weight Indicators, PN 117085

10.14 Specifications

Power

Line Voltages	115 or 230 VAC
Frequency	50 or 60 Hz
Power Consumption (universal model, $32 \times 350 \Omega$ load cells)	
$\begin{aligned} & 115 \mathrm{VAC} \\ & 230 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~mA}(46 \mathrm{~W}) \\ & 250 \mathrm{~mA}(58 \mathrm{~W}) \end{aligned}$
$\begin{aligned} & \text { Fusing } \\ & 115 \text { VAC } \end{aligned}$	$2 \times 2 \mathrm{~A}$ TR5 subminiature fuses Wickmann Time-Lag 19374 Series UL Listed, CSA Certified and Approved
230 VAC	$2 \times 2 A$ TR5 subminiature fuses Wickmann Time-Lag 19374 Series UL Recognized, Semko and VDE Approved

A/D Specifications

Excitation Voltage	$\begin{aligned} & 10 \pm 0.5 \mathrm{VDC}, \\ & 16 \times 350 \Omega \text { or } 32 \times 700 \Omega \text { load cells per } \\ & \text { A/D card } \end{aligned}$
Sense Amplifier	Differential amplifier with 4- and 6-wire sensing
Analog Signal Input Range -10 mV to +40 mV	
Analog Signal Sensitivit	$\begin{array}{ll}\text { Sensitivity } & 0.3 \mu \mathrm{~V} / \text { grad minimum @ } 7.5 \mathrm{~Hz} \\ & 1.0 \mu \mathrm{~V} / \text { grad typical @ } 120 \mathrm{~Hz} \\ & 4.0 \mu \mathrm{~V} / \text { grad typical @ } 960 \mathrm{~Hz}\end{array}$
A/D Sample Rate	te $\quad 7.5-960 \mathrm{~Hz}$, software selectable
Input Impedance	e $\quad>35 \mathrm{M} \Omega$ typical
Internal Resolution	ion 8000000 counts
Wt Display Resolution	olution 9,999,999
Input Sensitivity	10 nV per internal count
System Linearity	y $\pm 0.01 \%$ of full scale
Zero Stability	$\pm 150 \mathrm{nV} /{ }^{\circ} \mathrm{C}$, maximum
Span Stability	$\pm 3.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, maximum
Input Voltage Differenti	ifferential $\pm 800 \mathrm{mV}$ referenced to earth ground
Input Overload	Load cell signal lines $\pm 10 \mathrm{~V}$ continuous, ESD protected
RFI/EMI Protection	Communications, signal, excitation, and sense lines protected
Digital Specifications	
Microcomputer Mot	Motorola ColdFire ${ }^{\circledR}$ MCF5307 main processor @ 90 MHz
Digital I/O $61 / \mathrm{O}$	6 I/O channels on CPU board; optional 24-channel I/O expansion cards available
Digital Filter \quad Soft	Software selectable: 1-256, enhanced Rattletrap ${ }^{\circledR}$ hybrid digital filtering
Serial Communications	
Serial Ports 4 ports bps; op cards	4 ports on CPU board support up to 115200 bps; optional dual-channel serial expansion cards available
Port $1 \quad$ Full dup	Full duplex RS-232
Port 2 RS-232	RS-232 with CTS/RTS; PS/2 keyboard interface via DB-9 connector
Port $3 \quad$ Full dup	Full duplex RS-232, 20 mA output
Port $4 \quad$ Full dup	Full duplex RS-232, 2-wire RS-485, 20 mA output, RS-422

Operator Interíace
Display
320×240 pixel VGA LCD display module with adjustable contrast, 75 Hz scan rate $26000 \mathrm{~cd} / \mathrm{m}^{2}$ brightness
Keyboard
27-key membrane panel, PS/2 port for external keyboard connection

Environmental

Operating Temperature

Legal	-10 to $+40^{\circ} \mathrm{C}\left(14\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
Industrial	-10 to $+40^{\circ} \mathrm{C}\left(14\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
orage Temperature	-10 to $+70^{\circ} \mathrm{C}\left(14\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
umidity	$0-95 \%$ relative humidity

Enclosure

Enclosure Dimensions	
\quad Universal enclosure	$10.56 \mathrm{in} \times 8.51 \mathrm{in} \times 4.61 \mathrm{in}$
(without tilt stand)	$268 \mathrm{~mm} \times 216 \mathrm{~mm} \times 117 \mathrm{~mm}$
Deep enclosure	$10.76 \mathrm{in} \times 8.51 \times 5.25 \mathrm{in}$
(without tilt stand)	$273 \mathrm{~mm} \times 216 \mathrm{~mm} \times 133 \mathrm{~mm}$
Panel mount enclosure	$11.5 \mathrm{in} \times 9.1 \mathrm{in} \times 5 \mathrm{in}$
	$292 \mathrm{~mm} \times 231 \mathrm{~mm} \times 127 \mathrm{~mm}$
Wall mount enclosure	$14 \mathrm{in} \times 18 \mathrm{in} \times 6.75 \mathrm{in}$
	$356 \mathrm{~mm} \times 457 \mathrm{~mm} \times 171 \mathrm{~mm}$

Weight

Universal enclosure	$9.5 \mathrm{lb}(4.3 \mathrm{Kg})$
Deep enclosure	$10.75 \mathrm{lb}(4.9 \mathrm{Kg})$
Panel mount enclosure	$8.5 \mathrm{lb}(3.9 \mathrm{Kg})$
Wall mount enclosure	$23 \mathrm{lb}(10.4 \mathrm{Kg})$

Rating/Material NEMA 4X/P66, stainless steel

Certifications and Approvals

NTEP
CoC Number01-088
Accuracy Class III/IIIL $n_{\max }: 10000$
Measurement Canada
Approval AM-5426
Accuracy Class III $n_{\max }: 10000$
UL
CUL Us File Number:E151461
LISTED

Panel mount model

Wall mount model
UL 508A control panel approved
File Number:E207758
LISTED
OIML

GB-1140 $\quad n_{\max }: 6000$
GB-1135 $\quad n_{\max }: 10000$

920i Limited Warranty

Rice Lake Weighing Systems warrants that all Rice Lake Weighing Systems equipment and systems properly installed by a Distributor or Original Equipment Manufacturer (OEM) will operate per written specifications as confirmed by the Distributor/OEM and accepted by Rice Lake Weighing Systems. All systems and components are warranted against defects in materials and workmanship for two years.
Rice Lake Weighing Systems warrants that the equipment sold hereunder will conform to the current written specifications authorized by Rice Lake Weighing Systems. Rice Lake Weighing Systems warrants the equipment against faulty workmanship and defective materials. If any equipment fails to conform to these warranties, Rice Lake Weighing Systems will, at its option, repair or replace such goods returned within the warranty period subject to the following conditions:

- Upon discovery by Buyer of such nonconformity, Rice Lake Weighing Systems will be given prompt written notice with a detailed explanation of the alleged deficiencies.
- Individual electronic components returned to Rice Lake Weighing Systems for warranty purposes must be packaged to prevent electrostatic discharge (ESD) damage in shipment.
- Examination of such equipment by Rice Lake Weighing Systems confirms that the nonconformity actually exists, and was not caused by accident, misuse, neglect, alteration, improper installation, improper repair or improper testing; Rice Lake Weighing Systems shall be the sole judge of all alleged non-conformities.
- Such equipment has not been modified, altered, or changed by any person other than Rice Lake Weighing Systems or its duly authorized repair agents.
- Rice Lake Weighing Systems will have a reasonable time to repair or replace the defective equipment. Buyer is responsible for shipping charges both ways.
- In no event will Rice Lake Weighing Systems be responsible for travel time or on-location repairs, including assembly or disassembly of equipment, nor will Rice Lake Weighing Systems be liable for the cost of any repairs made by others.
THESE WARRANTIES EXCLUDE ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WITHOUT Limitation warranties of merchantability or fitness for a particular purpose. Neither Rice Lake Weighing Systems or distributor will, in any event, be liable for incidental or CONSEQUENTIAL DAMAGES.
Rice Lake Weighing Systems and buyer agree that Rice Lake Weighing Systems's sole and EXCLUSIVE LIAbILITY HEREUNDER IS LIMITED TO REPAIR OR REPLACEMENT OF SUCH GOODS. IN ACCEPTING THIS WARRANTY, THE BUYER WAIVES ANY AND ALL OTHER CLAIMS TO WARRANTY.
Should the seller be other than Rice Lake Weighing Systems, the buyer agrees to look only TO THE SELLER FOR WARRANTY CLAIMS.
No TERMS, CONDITIONS, UNDERSTANDING, OR AGREEMENTS PURPORTING TO MODIFY THE TERMS OF THIS WARRANTY SHALL HAVE ANY LEGAL EFFECT UNLESS MADE IN WRITING AND SIGNED BY A CORPORATE officer of Rice Lake Weighing Systems and the Buyer.
© 2011 Rice Lake Weighing Systems, Inc. Rice Lake, WI USA. All Rights Reserved.

RICE LAKE WEIGHING SYSTEMS • 230 WEST COLEMAN STREET•RICE LAKE, WISCONSIN $54868 \cdot$ USA

 WEIGHINGSYSTEMS
 230 W. Coleman St. • Rice Lake, WI 54868 • USA
 U.S. 800-472-6703 • Canada/Mexico 800-321-6703 International 715-234-9171

[^0]: 1. EtherNet/IP ${ }^{T M}$ is a trademark of ControlNet International, Ltd., under license by the Open DeviceNet Vendor Association.
 2. DeviceNet ${ }^{\text {TM }}$ is a trademark of the Open DeviceNet Vendor Association.
 3. Allen-Bradley ${ }^{\circledR}$, PLC ${ }^{\circledR}$, and $S L C^{\text {TM }}$ are trademarks of Allen-Bradley Company, Inc., a Rockwell International company.
 4. Profibus ${ }^{\circledR}$ is a registered trademark of Profibus International.
 5. ControlNet ${ }^{\text {TM }}$. is a trademark of Control Net International
